False discovery control in large‐scale spatial multiple testing

The paper develops a unified theoretical and computational framework for false discovery control in multiple testing of spatial signals. We consider both pointwise and clusterwise spatial analyses, and derive oracle procedures which optimally control the false discovery rate, false discovery exceeda...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2015-01, Vol.77 (1), p.59-83
Hauptverfasser: Sun, Wenguang, Reich, Brian J, Tony Cai, T, Guindani, Michele, Schwartzman, Armin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper develops a unified theoretical and computational framework for false discovery control in multiple testing of spatial signals. We consider both pointwise and clusterwise spatial analyses, and derive oracle procedures which optimally control the false discovery rate, false discovery exceedance and false cluster rate. A data‐driven finite approximation strategy is developed to mimic the oracle procedures on a continuous spatial domain. Our multiple‐testing procedures are asymptotically valid and can be effectively implemented using Bayesian computational algorithms for analysis of large spatial data sets. Numerical results show that the procedures proposed lead to more accurate error control and better power performance than conventional methods. We demonstrate our methods for analysing the time trends in tropospheric ozone in eastern USA.
ISSN:1369-7412
1467-9868
DOI:10.1111/rssb.12064