A molecular diagnostic approach able to detect the recurrent genetic prognostic factors typical of presenting myeloma

Risk stratification in myeloma requires an accurate assessment of the presence of a range of molecular abnormalities including the differing IGH translocations and the recurrent copy number abnormalities that can impact clinical behavior. Currently, interphase fluorescence in situ hybridization is u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes chromosomes & cancer 2015-02, Vol.54 (2), p.91-98
Hauptverfasser: Boyle, Eileen M., Proszek, Paula Z., Kaiser, Martin F., Begum, Dil, Dahir, Nasrin, Savola, Suvi, Wardell, Christopher P., Leleu, Xavier, Ross, Fiona M., Chiecchio, Laura, Cook, Gordon, Drayson, Mark T., Owen, Richard G., Ashcroft, John M., Jackson, Graham H., Anthony Child, James, Davies, Faith E., Walker, Brian A., Morgan, Gareth J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Risk stratification in myeloma requires an accurate assessment of the presence of a range of molecular abnormalities including the differing IGH translocations and the recurrent copy number abnormalities that can impact clinical behavior. Currently, interphase fluorescence in situ hybridization is used to detect these abnormalities. High failure rates, slow turnaround, cost, and labor intensiveness make it difficult and expensive to use in routine clinical practice. Multiplex ligation‐dependent probe amplification (MLPA), a molecular approach based on a multiplex polymerase chain reaction method, offers an alternative for the assessment of copy number changes present in the myeloma genome. Here, we provide evidence showing that MLPA is a powerful tool for the efficient detection of copy number abnormalities and when combined with expression assays, MLPA can detect all of the prognostically relevant molecular events which characterize presenting myeloma. This approach opens the way for a molecular diagnostic strategy that is efficient, high throughput, and cost effective. © 2014 The Authors. Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc.
ISSN:1045-2257
1098-2264
DOI:10.1002/gcc.22222