Overexpression of penicillin V acylase from Streptomyces lavendulae and elucidation of its catalytic residues

The pva gene from Streptomyces lavendulae ATCC 13664, encoding a novel penicillin V acylase (SlPVA), has been isolated and characterized. The gene encodes an inactive precursor protein containing a secretion signal peptide that is activated by two internal autoproteolytic cleavages that release a 25...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2015-02, Vol.81 (4), p.1225-1233
Hauptverfasser: Torres-Bacete, Jesús, Hormigo, Daniel, Torres-Gúzman, Raquel, Arroyo, Miguel, Castillón, María Pilar, García, Luis José, Acebal, Carmen, de la Mata, Isabel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pva gene from Streptomyces lavendulae ATCC 13664, encoding a novel penicillin V acylase (SlPVA), has been isolated and characterized. The gene encodes an inactive precursor protein containing a secretion signal peptide that is activated by two internal autoproteolytic cleavages that release a 25-amino-acid linker peptide and two large domains of 18.79 kDa (alpha-subunit) and 60.09 kDA (beta-subunit). Based on sequence alignments and the three-dimensional model of SlPVA, the enzyme contains a hydrophobicpocket involved in catalytic activity, including Serbeta1, Hisbeta23, Valbeta70, and Asnbeta272, which were confirmed by site-directed mutagenesis studies. The heterologous expression of pva in S. lividans led to the production of an extracellularly homogeneous heterodimeric enzyme at a 5-fold higher concentration (959 IU/liter) than in the original host and in a considerably shorter time. According to the catalytic properties of SlPVA, the enzyme must be classified as a new member of the Ntn-hydrolase superfamily, which belongs to a novel subfamily of acylases that recognize substrates with long hydrophobic acyl chains and have biotechnological applications in semisynthetic antifungal production.
ISSN:0099-2240
1098-5336
1098-6596
DOI:10.1128/AEM.02352-14