A Prospective Population Pharmacokinetic Analysis of Sapropterin Dihydrochloride in Infants and Young Children with Phenylketonuria

Background and Objectives Untreated phenylketonuria (PKU), a hereditary metabolic disorder caused by a genetic mutation in phenylalanine hydroxylase (PAH), is characterized by elevated blood phenylalanine (Phe) and severe neurologic disease. Sapropterin dihydrochloride, a synthetic preparation of na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical pharmacokinetics 2015-02, Vol.54 (2), p.195-207
Hauptverfasser: Qi, Yulan, Mould, Diane R., Zhou, Huiyu, Merilainen, Markus, Musson, Donald G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background and Objectives Untreated phenylketonuria (PKU), a hereditary metabolic disorder caused by a genetic mutation in phenylalanine hydroxylase (PAH), is characterized by elevated blood phenylalanine (Phe) and severe neurologic disease. Sapropterin dihydrochloride, a synthetic preparation of naturally occurring PAH cofactor tetrahydrobiopterin (BH4), activates residual PAH in a subset of patients, resulting in decreased blood Phe and increased Phe tolerance. The objective of this study was to determine the appropriate dose of sapropterin in pediatric patients (0–6 years). The study design used D-optimization and was prospectively powered to achieve precise estimates of clearance and volume of distribution. Methods Oral sapropterin (5 or 20 mg/kg) was administered once daily. Sapropterin plasma concentrations were measured by a validated method. Population pharmacokinetic analysis was performed with NONMEM ® version 7.2 on pooled data from 156 pediatric and adult PKU patients in two phase III clinical studies. Results The best pharmacokinetic model was a one-compartment model with an absorption lag, first-order input, and linear elimination, with a factor describing endogenous BH4 levels. Body weight was the only covariate significantly affecting sapropterin pharmacokinetics. Based on recommended dosing, exposure across age groups was comparable. The absorption rate and terminal half-life suggest flip-flop pharmacokinetic behavior where absorption is rate limiting. Conclusion The effect of weight on sapropterin pharmacokinetics was significant and exposure was comparable across age groups; thus, weight-based dosing is appropriate. The doses selected for pediatric patients provided similar exposure as in adults. Given the slow absorption and elimination half-life, once-daily dosing is justified.
ISSN:0312-5963
1179-1926
DOI:10.1007/s40262-014-0196-4