Achieving planar plasmonic subwavelength resolution using alternately arranged insulator-metal and insulator-insulator-metal composite structures

This work develops and analyzes a planar subwavelength device with the ability of one-dimensional resolution at visible frequencies that is based on alternately arranged insulator-metal (IM) and insulator-insulator-metal (IIM) composite structures. The mechanism for the proposed device to accomplish...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2015-01, Vol.5 (1), p.7996-7996, Article 7996
Hauptverfasser: Cheng, Bo Han, Chang, Kai Jiun, Lan, Yung-Chiang, Tsai, Din Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work develops and analyzes a planar subwavelength device with the ability of one-dimensional resolution at visible frequencies that is based on alternately arranged insulator-metal (IM) and insulator-insulator-metal (IIM) composite structures. The mechanism for the proposed device to accomplish subwavelength resolution is elucidated by analyzing the dispersion relations of the IM-IIM composite structures. Electromagnetic simulations based on the finite element method (FEM) are performed to verify that the design of the device has subwavelength resolution. The ability of subwavelength resolution of the proposed device at various visible frequencies is achieved by slightly varying the constituent materials and geometric parameters. The proposed devices have potential applications in multi-functional material, real-time super-resolution imaging and high-density photonic components.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep07996