Leveraging cross-link modification events in CLIP-seq for motif discovery
High-throughput protein-RNA interaction data generated by CLIP-seq has provided an unprecedented depth of access to the activities of RNA-binding proteins (RBPs), the key players in co- and post-transcriptional regulation of gene expression. Motif discovery forms part of the necessary follow-up data...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2015-01, Vol.43 (1), p.95-103 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-throughput protein-RNA interaction data generated by CLIP-seq has provided an unprecedented depth of access to the activities of RNA-binding proteins (RBPs), the key players in co- and post-transcriptional regulation of gene expression. Motif discovery forms part of the necessary follow-up data analysis for CLIP-seq, both to refine the exact locations of RBP binding sites, and to characterize them. The specific properties of RBP binding sites, and the CLIP-seq methods, provide additional information not usually present in the classic motif discovery problem: the binding site structure, and cross-linking induced events in reads. We show that CLIP-seq data contains clear secondary structure signals, as well as technology- and RBP-specific cross-link signals. We introduce Zagros, a motif discovery algorithm specifically designed to leverage this information and explore its impact on the quality of recovered motifs. Our results indicate that using both secondary structure and cross-link modifications can greatly improve motif discovery on CLIP-seq data. Further, the motifs we recover provide insight into the balance between sequence- and structure-specificity struck by RBP binding. |
---|---|
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/gku1288 |