Mapping the results of local statistics: Using geographically weighted regression

The application of geographically weighted regression (GWR) - a local spatial statistical technique used to test for spatial nonstationarity - has grown rapidly in the social, health and demographic sciences. GWR is a useful exploratory analytical tool that generates a set of location-specific param...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Demographic research 2012, Vol.26, p.151-166
Hauptverfasser: Matthews, Stephen A., Yang, Tse-Chuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of geographically weighted regression (GWR) - a local spatial statistical technique used to test for spatial nonstationarity - has grown rapidly in the social, health and demographic sciences. GWR is a useful exploratory analytical tool that generates a set of location-specific parameter estimates which can be mapped and analysed to provide information on spatial nonstationarity in relationships between predictors and the outcome variable. A major challenge to GWR users, however, is how best to map these parameter estimates. This paper introduces a simple mapping technique that combines local parameter estimates and local t-values on one map. The resultant map can facilitate the exploration and interpretation of nonstationarity.
ISSN:1435-9871
2363-7064
1435-9871
DOI:10.4054/DemRes.2012.26.6