Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals

Self-assembly has emerged as a powerful approach to generating complex supramolecular architectures. Despite there being many crystalline frameworks reported in the solid state, the construction of highly soluble periodic supramolecular networks in a three-dimensional space is still a challenge. Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-12, Vol.5 (1), p.5574-5574, Article 5574
Hauptverfasser: Tian, Jia, Zhou, Tian-You, Zhang, Shao-Chen, Aloni, Shaul, Altoe, Maria Virginia, Xie, Song-Hai, Wang, Hui, Zhang, Dan-Wei, Zhao, Xin, Liu, Yi, Li, Zhan-Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self-assembly has emerged as a powerful approach to generating complex supramolecular architectures. Despite there being many crystalline frameworks reported in the solid state, the construction of highly soluble periodic supramolecular networks in a three-dimensional space is still a challenge. Here we demonstrate that the encapsulation motif, which involves the dimerization of two aromatic units within cucurbit[8]uril, can be used to direct the co-assembly of a tetratopic molecular block and cucurbit[8]uril into a periodic three-dimensional supramolecular organic framework in water. The periodicity of the supramolecular organic framework is supported by solution-phase small-angle X-ray-scattering and diffraction experiments. Upon evaporating the solvent, the periodicity of the framework is maintained in porous microcrystals. As a supramolecular ‘ion sponge’, the framework can absorb different kinds of anionic guests, including drugs, in both water and microcrystals, and drugs absorbed in microcrystals can be released to water with selectivity. The construction of soluble periodic supramolecular three-dimensional networks is challenging. Here, the authors use an encapsulated dimerization strategy to direct the assembly of a periodic three-dimensional supramolecular organic framework and evaluate its absorption properties.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms6574