Dopamine Receptors in the Substantia Nigra are Involved in the Regulation of Muscle Tone

The aim of the present study was to localize the dopamine receptors involved in the regulation of muscle tone. A strategy was used whereby the effects on muscle tone of injecting the irreversible dopamine receptor antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) in discrete brain reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1995-02, Vol.92 (5), p.1669-1673
Hauptverfasser: Double, Kay L., Crocker, Ann D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of the present study was to localize the dopamine receptors involved in the regulation of muscle tone. A strategy was used whereby the effects on muscle tone of injecting the irreversible dopamine receptor antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) in discrete brain regions were assessed. Increases in muscle tone were measured as changes in electromyographic activity of the gastrocnemius and tibialis muscles of conscious, unrestrained rats. No increases in muscle tone were found after injections of EEDQ into the anterior and posterior striatum, which produced marked reductions in dopamine receptor concentration. The effects on muscle tone of injecting EEDQ into the substantia nigra pars reticulata were also assessed. Large increases in muscle tone were observed associated with inactivation of either D1or D2dopamine receptors in the substantia nigra. The increased muscle tone was not reduced by subcutaneous administration of apomorphine, despite the presence of a normal population of striatal dopamine receptors. These findings provide evidence that dopamine receptors in the substantia nigra play an important role in the regulation of muscle tone. Further, they challenge the hypothesis that the muscle rigidity of Parkinson disease results primarily from loss of striatal dopamine receptor stimulation.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.92.5.1669