Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN

To better inform the subsurface scientist on the expected performance of parallel simulators, this work investigates performance of the reactive multiphase flow and multicomponent biogeochemical transport code PFLOTRAN as it is applied to several realistic modeling scenarios run on the Jaguar superc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2014-01, Vol.50 (1), p.208-228
Hauptverfasser: Hammond, G. E., Lichtner, P. C., Mills, R. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To better inform the subsurface scientist on the expected performance of parallel simulators, this work investigates performance of the reactive multiphase flow and multicomponent biogeochemical transport code PFLOTRAN as it is applied to several realistic modeling scenarios run on the Jaguar supercomputer. After a brief introduction to the code's parallel layout and code design, PFLOTRAN's parallel performance (measured through strong and weak scalability analyses) is evaluated in the context of conceptual model layout, software and algorithmic design, and known hardware limitations. PFLOTRAN scales well (with regard to strong scaling) for three realistic problem scenarios: (1) in situ leaching of copper from a mineral ore deposit within a 5‐spot flow regime, (2) transient flow and solute transport within a regional doublet, and (3) a real‐world problem involving uranium surface complexation within a heterogeneous and extremely dynamic variably saturated flow field. Weak scalability is discussed in detail for the regional doublet problem, and several difficulties with its interpretation are noted. Key Points Scientists must better understand the benefit of high-performance computing PFLOTRAN's scalability is exceptional on multiple realistic subsurface problems Understanding PFLOTRAN's scalability better educates on expected performance
ISSN:0043-1397
1944-7973
DOI:10.1002/2012WR013483