Overexpression p21WAF1/CIP1 in suppressing retinal pigment epithelial cells and progression of proliferative vitreoretinopathy via inhibition CDK2 and cyclin E

P21 is one kind of cyclin-dependent kinase inhibitor that can prevent cells from going through the G1/S phase checkpoint and inhibit cell proliferation. Proliferative vitreoretinopathy (PVR) is a proliferative response in the eye. The aim of this study was to determine whether p21Waf1/Cip1 (p21) sup...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC ophthalmology 2014-11, Vol.14 (1), p.144-144, Article 144
Hauptverfasser: Wang, Ying, Yuan, Zhigang, You, Caiyun, Han, Jindong, Li, Haiyan, Zhang, Zhuhong, Yan, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:P21 is one kind of cyclin-dependent kinase inhibitor that can prevent cells from going through the G1/S phase checkpoint and inhibit cell proliferation. Proliferative vitreoretinopathy (PVR) is a proliferative response in the eye. The aim of this study was to determine whether p21Waf1/Cip1 (p21) suppresses the proliferation and migration of retinal pigment epithelial (RPE) cells in vitro and controls PVR development in vivo. Cell cycle analyses and transwell assays were conducted to assess cell proliferation characteristics and the migration ability of RPE cells after transfection with p21. Western blot and reverse-transcription polymerase chain reaction technologies were used to detect the expression of p21, CDK2 and cyclinE in RPE cells and rabbit retinal tissues. The impact of increasing p21 expression on PVR development was conducted by implantation of an adenovirus vector containing rabbit p21 (rAd-p21) in a PVR rabbit model. The prevalence of PVR and retinal detachment was determined by indirect ophthalmoscopy on days 3, 7, 14, and 21 after the injection of rAd-p21 into the vitreous. B scans and hematoxylin-eosin staining were employed to check rabbit retinas on day 21. Cell cycle analyses and transwell assays showed that p21 inhibited the proliferation and migration of RPE cells. Increased expression of p21 was detected in cultured RPE cells and rabbit retinas after transfection with the p21 gene, whereas levels of CDK2 and cyclinE were decreased. The increase in p21 expression effectively suppressed the development of PVR in a rabbit model. The increase in p21 expression in RPE cells not only inhibits the proliferation and migration of RPE cells in vitro, but also suppresses the development of PVR in vivo, which indicates its therapeutic potential in treating PVR.
ISSN:1471-2415
1471-2415
DOI:10.1186/1471-2415-14-144