Toward Intelligent Synthetic Neural Circuits: Directing and Accelerating Neuron Cell Growth by Self-Rolled-Up Silicon Nitride Microtube Array

In neural interface platforms, cultures are often carried out on a flat, open, rigid, and opaque substrate, posing challenges to reflecting the native microenvironment of the brain and precise engagement with neurons. Here we present a neuron cell culturing platform that consists of arrays of ordere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2014-11, Vol.8 (11), p.11108-11117
Hauptverfasser: Froeter, Paul, Huang, Yu, Cangellaris, Olivia V, Huang, Wen, Dent, Erik W, Gillette, Martha U, Williams, Justin C, Li, Xiuling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11117
container_issue 11
container_start_page 11108
container_title ACS nano
container_volume 8
creator Froeter, Paul
Huang, Yu
Cangellaris, Olivia V
Huang, Wen
Dent, Erik W
Gillette, Martha U
Williams, Justin C
Li, Xiuling
description In neural interface platforms, cultures are often carried out on a flat, open, rigid, and opaque substrate, posing challenges to reflecting the native microenvironment of the brain and precise engagement with neurons. Here we present a neuron cell culturing platform that consists of arrays of ordered microtubes (2.7–4.4 μm in diameter), formed by strain-induced self-rolled-up nanomembrane (s-RUM) technology using ultrathin (
doi_str_mv 10.1021/nn504876y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4246008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762068365</sourcerecordid><originalsourceid>FETCH-LOGICAL-a504t-b9a89fe66b84550fd0ac254fce98cb7b682fa348879042eb15d5180067b8e6143</originalsourceid><addsrcrecordid>eNptkUFvFCEYhonR2Fo9-AcMFxM9jMLMwDAemmxWrU1qTdw28UaA-WaXhoUVGJv5Ef5nqVs3mniCwJMH3u9F6Dklbyip6VvvGWlFx-cH6Jj2Da-I4N8eHvaMHqEnKd0QwrpCPUZHNWvqngt-jH5ehVsVB3zuMzhn1-AzXs0-byBbgy9hisrhpY1msjm9w-9tBJOtX2PlB7wwBhxE9fvgjg0eL4sGn8VwmzdYz3gFbqy-BudgqK53eGWdNYW6tDnaAfBna2LIkwa8iFHNT9GjUbkEz-7XE3T98cPV8lN18eXsfLm4qFQJmivdK9GPwLkWLWNkHIgyNWtHA70wutNc1KNqWiG6nrQ1aMoGRgUhvNMCOG2bE3S69-4mvYXBlNQlp9xFu1VxlkFZ-e-Ntxu5Dj9kW7ecEFEEr-4FMXyfIGW5takMwykPYUqSdrwmXDScFfT1Hi1JU4owHp6hRN7VJw_1FfbF3_86kH_6KsDLPaBMkjdhir6M6T-iX9rnpJk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762068365</pqid></control><display><type>article</type><title>Toward Intelligent Synthetic Neural Circuits: Directing and Accelerating Neuron Cell Growth by Self-Rolled-Up Silicon Nitride Microtube Array</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Froeter, Paul ; Huang, Yu ; Cangellaris, Olivia V ; Huang, Wen ; Dent, Erik W ; Gillette, Martha U ; Williams, Justin C ; Li, Xiuling</creator><creatorcontrib>Froeter, Paul ; Huang, Yu ; Cangellaris, Olivia V ; Huang, Wen ; Dent, Erik W ; Gillette, Martha U ; Williams, Justin C ; Li, Xiuling</creatorcontrib><description>In neural interface platforms, cultures are often carried out on a flat, open, rigid, and opaque substrate, posing challenges to reflecting the native microenvironment of the brain and precise engagement with neurons. Here we present a neuron cell culturing platform that consists of arrays of ordered microtubes (2.7–4.4 μm in diameter), formed by strain-induced self-rolled-up nanomembrane (s-RUM) technology using ultrathin (&lt;40 nm) silicon nitride (SiN x ) film on transparent substrates. These microtubes demonstrated robust physical confinement and unprecedented guidance effect toward outgrowth of primary cortical neurons, with a coaxially confined configuration resembling that of myelin sheaths. The dynamic neural growth inside the microtube, evaluated with continuous live-cell imaging, showed a marked increase (20×) of the growth rate inside the microtube compared to regions outside the microtubes. We attribute the dramatic accelerating effect and precise guiding of the microtube array to three-dimensional (3D) adhesion and electrostatic interaction with the SiN x microtubes, respectively. This work has clear implications toward building intelligent synthetic neural circuits by arranging the size, site, and patterns of the microtube array, for potential treatment of neurological disorders.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn504876y</identifier><identifier>PMID: 25329686</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Arrays ; Cell Division ; Construction ; Culture ; Fluorescence ; Microscopy, Electron, Scanning ; Nanostructure ; Neural Networks (Computer) ; Neurons ; Neurons - cytology ; Platforms ; Silicon Compounds ; Silicon nitride ; Three dimensional</subject><ispartof>ACS nano, 2014-11, Vol.8 (11), p.11108-11117</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright © 2014 American Chemical Society 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a504t-b9a89fe66b84550fd0ac254fce98cb7b682fa348879042eb15d5180067b8e6143</citedby><cites>FETCH-LOGICAL-a504t-b9a89fe66b84550fd0ac254fce98cb7b682fa348879042eb15d5180067b8e6143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn504876y$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn504876y$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25329686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Froeter, Paul</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Cangellaris, Olivia V</creatorcontrib><creatorcontrib>Huang, Wen</creatorcontrib><creatorcontrib>Dent, Erik W</creatorcontrib><creatorcontrib>Gillette, Martha U</creatorcontrib><creatorcontrib>Williams, Justin C</creatorcontrib><creatorcontrib>Li, Xiuling</creatorcontrib><title>Toward Intelligent Synthetic Neural Circuits: Directing and Accelerating Neuron Cell Growth by Self-Rolled-Up Silicon Nitride Microtube Array</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>In neural interface platforms, cultures are often carried out on a flat, open, rigid, and opaque substrate, posing challenges to reflecting the native microenvironment of the brain and precise engagement with neurons. Here we present a neuron cell culturing platform that consists of arrays of ordered microtubes (2.7–4.4 μm in diameter), formed by strain-induced self-rolled-up nanomembrane (s-RUM) technology using ultrathin (&lt;40 nm) silicon nitride (SiN x ) film on transparent substrates. These microtubes demonstrated robust physical confinement and unprecedented guidance effect toward outgrowth of primary cortical neurons, with a coaxially confined configuration resembling that of myelin sheaths. The dynamic neural growth inside the microtube, evaluated with continuous live-cell imaging, showed a marked increase (20×) of the growth rate inside the microtube compared to regions outside the microtubes. We attribute the dramatic accelerating effect and precise guiding of the microtube array to three-dimensional (3D) adhesion and electrostatic interaction with the SiN x microtubes, respectively. This work has clear implications toward building intelligent synthetic neural circuits by arranging the size, site, and patterns of the microtube array, for potential treatment of neurological disorders.</description><subject>Arrays</subject><subject>Cell Division</subject><subject>Construction</subject><subject>Culture</subject><subject>Fluorescence</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanostructure</subject><subject>Neural Networks (Computer)</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Platforms</subject><subject>Silicon Compounds</subject><subject>Silicon nitride</subject><subject>Three dimensional</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNptkUFvFCEYhonR2Fo9-AcMFxM9jMLMwDAemmxWrU1qTdw28UaA-WaXhoUVGJv5Ef5nqVs3mniCwJMH3u9F6Dklbyip6VvvGWlFx-cH6Jj2Da-I4N8eHvaMHqEnKd0QwrpCPUZHNWvqngt-jH5ehVsVB3zuMzhn1-AzXs0-byBbgy9hisrhpY1msjm9w-9tBJOtX2PlB7wwBhxE9fvgjg0eL4sGn8VwmzdYz3gFbqy-BudgqK53eGWdNYW6tDnaAfBna2LIkwa8iFHNT9GjUbkEz-7XE3T98cPV8lN18eXsfLm4qFQJmivdK9GPwLkWLWNkHIgyNWtHA70wutNc1KNqWiG6nrQ1aMoGRgUhvNMCOG2bE3S69-4mvYXBlNQlp9xFu1VxlkFZ-e-Ntxu5Dj9kW7ecEFEEr-4FMXyfIGW5takMwykPYUqSdrwmXDScFfT1Hi1JU4owHp6hRN7VJw_1FfbF3_86kH_6KsDLPaBMkjdhir6M6T-iX9rnpJk</recordid><startdate>20141125</startdate><enddate>20141125</enddate><creator>Froeter, Paul</creator><creator>Huang, Yu</creator><creator>Cangellaris, Olivia V</creator><creator>Huang, Wen</creator><creator>Dent, Erik W</creator><creator>Gillette, Martha U</creator><creator>Williams, Justin C</creator><creator>Li, Xiuling</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20141125</creationdate><title>Toward Intelligent Synthetic Neural Circuits: Directing and Accelerating Neuron Cell Growth by Self-Rolled-Up Silicon Nitride Microtube Array</title><author>Froeter, Paul ; Huang, Yu ; Cangellaris, Olivia V ; Huang, Wen ; Dent, Erik W ; Gillette, Martha U ; Williams, Justin C ; Li, Xiuling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a504t-b9a89fe66b84550fd0ac254fce98cb7b682fa348879042eb15d5180067b8e6143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Arrays</topic><topic>Cell Division</topic><topic>Construction</topic><topic>Culture</topic><topic>Fluorescence</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanostructure</topic><topic>Neural Networks (Computer)</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Platforms</topic><topic>Silicon Compounds</topic><topic>Silicon nitride</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Froeter, Paul</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Cangellaris, Olivia V</creatorcontrib><creatorcontrib>Huang, Wen</creatorcontrib><creatorcontrib>Dent, Erik W</creatorcontrib><creatorcontrib>Gillette, Martha U</creatorcontrib><creatorcontrib>Williams, Justin C</creatorcontrib><creatorcontrib>Li, Xiuling</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Froeter, Paul</au><au>Huang, Yu</au><au>Cangellaris, Olivia V</au><au>Huang, Wen</au><au>Dent, Erik W</au><au>Gillette, Martha U</au><au>Williams, Justin C</au><au>Li, Xiuling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Intelligent Synthetic Neural Circuits: Directing and Accelerating Neuron Cell Growth by Self-Rolled-Up Silicon Nitride Microtube Array</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2014-11-25</date><risdate>2014</risdate><volume>8</volume><issue>11</issue><spage>11108</spage><epage>11117</epage><pages>11108-11117</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>In neural interface platforms, cultures are often carried out on a flat, open, rigid, and opaque substrate, posing challenges to reflecting the native microenvironment of the brain and precise engagement with neurons. Here we present a neuron cell culturing platform that consists of arrays of ordered microtubes (2.7–4.4 μm in diameter), formed by strain-induced self-rolled-up nanomembrane (s-RUM) technology using ultrathin (&lt;40 nm) silicon nitride (SiN x ) film on transparent substrates. These microtubes demonstrated robust physical confinement and unprecedented guidance effect toward outgrowth of primary cortical neurons, with a coaxially confined configuration resembling that of myelin sheaths. The dynamic neural growth inside the microtube, evaluated with continuous live-cell imaging, showed a marked increase (20×) of the growth rate inside the microtube compared to regions outside the microtubes. We attribute the dramatic accelerating effect and precise guiding of the microtube array to three-dimensional (3D) adhesion and electrostatic interaction with the SiN x microtubes, respectively. This work has clear implications toward building intelligent synthetic neural circuits by arranging the size, site, and patterns of the microtube array, for potential treatment of neurological disorders.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25329686</pmid><doi>10.1021/nn504876y</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2014-11, Vol.8 (11), p.11108-11117
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4246008
source MEDLINE; American Chemical Society Journals
subjects Arrays
Cell Division
Construction
Culture
Fluorescence
Microscopy, Electron, Scanning
Nanostructure
Neural Networks (Computer)
Neurons
Neurons - cytology
Platforms
Silicon Compounds
Silicon nitride
Three dimensional
title Toward Intelligent Synthetic Neural Circuits: Directing and Accelerating Neuron Cell Growth by Self-Rolled-Up Silicon Nitride Microtube Array
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T20%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Intelligent%20Synthetic%20Neural%20Circuits:%20Directing%20and%20Accelerating%20Neuron%20Cell%20Growth%20by%20Self-Rolled-Up%20Silicon%20Nitride%20Microtube%20Array&rft.jtitle=ACS%20nano&rft.au=Froeter,%20Paul&rft.date=2014-11-25&rft.volume=8&rft.issue=11&rft.spage=11108&rft.epage=11117&rft.pages=11108-11117&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn504876y&rft_dat=%3Cproquest_pubme%3E1762068365%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762068365&rft_id=info:pmid/25329686&rfr_iscdi=true