Hypoxia-responsive microRNA-101 promotes angiogenesis via heme oxygenase-1/vascular endothelial growth factor axis by targeting cullin 3
Hypoxia induces expression of various genes and microRNAs (miRs) that regulate angiogenesis and vascular function. In this study, we investigated a new functional role of new hypoxia-responsive miR-101 in angiogenesis and its underlying mechanism for regulating heme oxygenase-1 (HO-1) and vascular e...
Gespeichert in:
Veröffentlicht in: | Antioxidants & redox signaling 2014-12, Vol.21 (18), p.2469-2482 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hypoxia induces expression of various genes and microRNAs (miRs) that regulate angiogenesis and vascular function. In this study, we investigated a new functional role of new hypoxia-responsive miR-101 in angiogenesis and its underlying mechanism for regulating heme oxygenase-1 (HO-1) and vascular endothelial growth factor (VEGF) expression.
We found that hypoxia induced miR-101, which binds to the 3'untranslated region of cullin 3 (Cul3) and stabilizes nuclear factor erythroid-derived 2-related factor 2 (Nrf2) via inhibition of the proteasomal degradation pathway. miR-101 overexpression promoted Nrf2 nuclear accumulation, which was accompanied with increases in HO-1 induction, VEGF expression, and endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) production. The elevated NO-induced S-nitrosylation of Kelch-like ECH-associated protein 1 and subsequent induction of Nrf2-dependent HO-1 lead to further elevation of VEGF production via a positive feedback loop between the Nrf2/HO-1 and VEGF/eNOS axes. Moreover, miR-101 promoted angiogenic signals and angiogenesis both in vitro and in vivo, and these events were attenuated by inhibiting the biological activity of HO-1, VEGF, or eNOS. Moreover, these effects were also observed in aortic rings from HO-1(+/-) and eNOS(-/-) mice. Local overexpression of miR-101 improved therapeutic angiogenesis and perfusion recovery in the ischemic mouse hindlimb, whereas antagomiR-101 diminished regional blood flow.
Hypoxia-responsive miR-101 stimulates angiogenesis by activating the HO-1/VEGF/eNOS axis via Cul3 targeting. Thus, miR-101 is a novel angiomir.
Our results provide new mechanistic insights into a functional role of miR-101 as a potential therapeutic target in angiogenesis and vascular remodeling. |
---|---|
ISSN: | 1523-0864 1557-7716 |
DOI: | 10.1089/ars.2014.5856 |