Evidence that prostacyclin modulates the vascular actions of calcium in man

Increases in extracellular calcium (Ca++) can alter vascular tone, and thus may result in increased blood pressure (Bp) and reduced renal blood flow (RBF). Ca++ can stimulate prostaglandin E2 (PGE2) and/or prostacyclin (PGI2) release in vitro, which may modulate Ca++ vascular effects. However, in ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 1986-04, Vol.77 (4), p.1278-1284
Hauptverfasser: NADLER, J. L, MCKAY, M, CAMPESE, V, VRBANAC, J, HORTON, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increases in extracellular calcium (Ca++) can alter vascular tone, and thus may result in increased blood pressure (Bp) and reduced renal blood flow (RBF). Ca++ can stimulate prostaglandin E2 (PGE2) and/or prostacyclin (PGI2) release in vitro, which may modulate Ca++ vascular effects. However, in man, the effect of Ca++ on PG release is not known. To study this, 14 volunteers received low-dose (2 mg/kg Ca++ gluconate) or high-dose (8 mg/kg) Ca++ infusions. The low-dose Ca++ infusion did not alter systemic or renal hemodynamics, but selectively stimulated PGI2, as reflected by the stable metabolite 6-keto-PGF1 alpha in urine (159 +/- 21-244 +/- 30 ng/g creatinine, P less than 0.02). The same Ca++ infusion given during cyclooxygenase blockade with indomethacin or ibuprofen was not associated with a rise in PGI2 and produced a rise in Bp and fall in RBF. However, sulindac, reported to be a weaker renal PG inhibitor, did not prevent the Ca++ -induced PGI2 stimulation (129 +/- 33-283 +/- 90, P less than 0.02), and RBF was maintained despite similar increases in Bp. The high-dose Ca++ infusion produced an increase in mean Bp without a change in cardiac output, and stimulated urinary 6-keto-PGF1 alpha to values greater than that produced by the 2-mg/kg Ca++ dose (330 +/- 45 vs. 244 +/- 30, P less than 0.05). In contrast, urinary PGE2 levels did not change. A Ca++ blocker, nifedipine, alone had no effect on Bp or urinary 6-keto-PGF1 alpha levels, but completely prevented the Ca++ -induced rise in Bp and 6-keto-PGF1 alpha excretion (158 +/- 30 vs. 182 +/- 38, P greater than 0.2). However, the rise in 6-keto-PGF1 alpha was not altered by the alpha 1 antagonist prazosin (159 +/- 21-258 +/- 23, P less than 0.02), suggesting that calcium entry and not alpha 1 receptor activation mediates Ca++ pressor and PGI2 stimulatory effects. These data indicate a new vascular regulatory system in which PGI2 modulates the systemic and renal vascular actions of calcium in man.
ISSN:0021-9738
1558-8238
DOI:10.1172/JCI112431