Targeted Delivery of PSC-RANTES for HIV-1 Prevention using Biodegradable Nanoparticles

Purpose Nanoparticles formulated from the biodegradable co-polymer poly(lactic-co-glycolic acid) (PLGA), were investigated as a drug delivery system to enhance tissue uptake, permeation, and targeting for PSC-RANTES anti-HIV-1 activity. Materials and Methods PSC-RANTES nanoparticles formulated via a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical research 2009-03, Vol.26 (3), p.502-511
Hauptverfasser: Ham, Anthony S, Cost, Marilyn R, Sassi, Alexandra B, Dezzutti, Charlene S, Rohan, Lisa Cencia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Nanoparticles formulated from the biodegradable co-polymer poly(lactic-co-glycolic acid) (PLGA), were investigated as a drug delivery system to enhance tissue uptake, permeation, and targeting for PSC-RANTES anti-HIV-1 activity. Materials and Methods PSC-RANTES nanoparticles formulated via a double emulsion process and characterized in both in vitro and ex vivo systems to determine PSC-RANTES release rate, nanoparticle tissue permeation, and anti-HIV bioactivity. Results Spherical, monodisperse (PDI = 0.098 ± 0.054) PSC-RANTES nanoparticles (d = 256.58 ± 19.57 nm) with an encapsulation efficiency of 82.23 ± 8.35% were manufactured. In vitro release studies demonstrated a controlled release profile of PSC-RANTES (71.48 ± 5.25% release). PSC-RANTES nanoparticle maintained comparable anti-HIV activity with unformulated PSC-RANTES in a HeLa cell-based system with an IC₅₀ of approximately 1pM. In an ex vivo cervical tissue model, PSC-RANTES nanoparticles displayed a fivefold increase in tissue uptake, enhanced tissue permeation, and significant localization at the basal layers of the epithelium over unformulated PSC-RANTES. Conclusions These results indicate that PSC-RANTES can readily be encapsulated into a PLGA nanoparticle drug delivery system, retain its anti-HIV-1 activity, and deliver PSC-RANTES to the target tissue. This is crucial for the success of this drug candidate as a topical microbicide product.
ISSN:0724-8741
1573-904X
DOI:10.1007/s11095-008-9765-2