effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers
Continuous exposure of tomato 'Trust' to high temperatures (day/night temperatures of 32/26 degrees C) markedly reduced the number of pollen grains per flower and decreased viability. The effect of heat stress on pollen viability was associated with alterations in carbohydrate metabolism i...
Gespeichert in:
Veröffentlicht in: | Annals of botany 2002-11, Vol.90 (5), p.631-636 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Continuous exposure of tomato 'Trust' to high temperatures (day/night temperatures of 32/26 degrees C) markedly reduced the number of pollen grains per flower and decreased viability. The effect of heat stress on pollen viability was associated with alterations in carbohydrate metabolism in various parts of the anther during its development. Under control, favourable temperature conditions (28/22 degrees C), starch accumulated in the pollen grains, where it reached a maximum value 3 d before anthesis; it then diminished towards anthesis. During anther development, the concentration of total soluble sugars gradually increased in the anther walls and in the pollen grains (but not in the locular fluid), reaching a maximum at anthesis. Continuous exposure of the plants to high temperatures (32/26 degrees C) prevented the transient increase in starch concentration and led to decreases in the concentrations of soluble sugars in the anther walls and the pollen grains. In the locular fluid, however, a higher soluble sugar concentration was detected under the high-temperature regime throughout anther development. These results suggest that a major effect of heat stress on pollen development is a decrease in starch concentration 3 d before anthesis, which results in a decreased sugar concentration in the mature pollen grains. These events possibly contribute to the decreased pollen viability in tomato. |
---|---|
ISSN: | 0305-7364 1095-8290 |
DOI: | 10.1093/aob/mcf240 |