Anethole, a Medicinal Plant Compound, Decreases the Production of Pro-Inflammatory TNF-α and IL-1β in a Rat Model of LPS-Induced Periodontitis

Periodontitis (PD) is known to be one of most prevalent worldwide chronic inflammatory diseases. There are several treatments including antibiotics for PD; however, since drug resistance is an increasing problem, new drugs particularly derived from plants with fewer side effects are required. The ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of pharmaceutical research : IJPR 2014-01, Vol.13 (4), p.1319-1325
Hauptverfasser: Moradi, Janet, Abbasipour, Fatemeh, Zaringhalam, Jalal, Maleki, Bita, Ziaee, Narges, Khodadoustan, Amin, Janahmadi, Mahyar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Periodontitis (PD) is known to be one of most prevalent worldwide chronic inflammatory diseases. There are several treatments including antibiotics for PD; however, since drug resistance is an increasing problem, new drugs particularly derived from plants with fewer side effects are required. The effects of trans-anethole on IL-1 β and TNF-α level in a rat model of PD were investigated and compared to ketoprofen. Eschericia coli lipopolysaccharide (LPS, 30 µg) was injected bilaterally into the palatal gingiva (3 µL/site) between the upper first and second molars every two days for 10 days in anesthetized rats. Administration of either trans-anethole (10 or 50 mg/Kg, i.p.) or ketoprofen (10 mg/Kg, i.p.) was started 20 minute before LPS injection and continued for 10 days. Then, IL-1β and TNF-α levels were measured in blood samples by ELISA at day 0 (control) and at day 10. Anethole at both concentrations significantly suppressed IL-1β and TNF-α production when compared to LPS-treated rats. The suppressive effects of anethole on LPS-induced pro-inflammatory cytokines were almost similar as seen with ketoprofen. In conclusion, the present results suggest that anethole may have a potent inhibitory effect on PD through suppression of pro-inflammatory molecules; therefore it could be a novel therapeutic strategy for PD.
ISSN:1735-0328
1726-6890