Genome-wide analysis of spatial gene expression in Arabidopsis flowers

We have compared the gene expression profiles of inflorescences of the floral homeotic mutants apetala1, apetala2, apetala3, pistillata, and agamous with that of wild-type plants using a flower-specific cDNA microarray and a whole genome oligonucleotide array. By combining the data sets from the ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2004-05, Vol.16 (5), p.1314-1326
Hauptverfasser: Wellmer, F, Riechmann, J.L, Alves-Ferreira, M, Meyerowitz, E.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have compared the gene expression profiles of inflorescences of the floral homeotic mutants apetala1, apetala2, apetala3, pistillata, and agamous with that of wild-type plants using a flower-specific cDNA microarray and a whole genome oligonucleotide array. By combining the data sets from the individual mutant/wild type comparisons, we were able to identify a large number of genes that are, within flowers, predicted to be specifically or at least predominantly expressed in one type of floral organ. We have analyzed the expression patterns of several of these genes by in situ hybridization and found that they match the predictions that were made based on the microarray experiments. Moreover, genes with known floral organ-specific expression patterns were correctly assigned by our analysis. The vast majority of the identified transcripts are found in stamens or carpels, whereas few genes are predicted to be expressed specifically or predominantly in sepals or petals. These findings indicate that spatially limited expression of a large number of genes is part of flower development and that its extent differs significantly between the reproductive organs and the organs of the perianth.
ISSN:1040-4651
1532-298X
1532-298X
DOI:10.1105/tpc.021741