SLO3 K+ Channels Control Calcium Entry through CATSPER Channels in Sperm
Here we show how a sperm-specific potassium channel (SLO3) controls Ca2+ entry into sperm through a sperm-specific Ca2+ channel, CATSPER, in a totally unanticipated manner. The genetic deletion of either of those channels confers male infertility in mice. During sperm capacitation SLO3 hyperpolarize...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2014-11, Vol.289 (46), p.32266-32275 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here we show how a sperm-specific potassium channel (SLO3) controls Ca2+ entry into sperm through a sperm-specific Ca2+ channel, CATSPER, in a totally unanticipated manner. The genetic deletion of either of those channels confers male infertility in mice. During sperm capacitation SLO3 hyperpolarizes the sperm, whereas CATSPER allows Ca2+ entry. These two channels may be functionally connected, but it had not been demonstrated that SLO3-dependent hyperpolarization is required for Ca2+ entry through CATSPER channels, nor has a functional mechanism linking the two channels been shown. In this study we show that Ca2+ entry through CATSPER channels is deficient in Slo3 mutant sperm lacking hyperpolarization; we also present evidence supporting the hypothesis that SLO3 channels activate CATSPER channels indirectly by promoting a rise in intracellular pH through a voltage-dependent mechanism. This mechanism may work through a Na+/H+ exchanger (sNHE) and/or a bicarbonate transporter, which utilizes the inward driving force of the Na+ gradient, rendering it intrinsically voltage-dependent. In addition, the sperm-specific Na+/H+ exchanger (sNHE) possess a putative voltage sensor that might be activated by membrane hyperpolarization, thus increasing the voltage sensitivity of internal alkalization. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M114.607556 |