SLO3 K+ Channels Control Calcium Entry through CATSPER Channels in Sperm

Here we show how a sperm-specific potassium channel (SLO3) controls Ca2+ entry into sperm through a sperm-specific Ca2+ channel, CATSPER, in a totally unanticipated manner. The genetic deletion of either of those channels confers male infertility in mice. During sperm capacitation SLO3 hyperpolarize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2014-11, Vol.289 (46), p.32266-32275
Hauptverfasser: Chávez, Julio César, Ferreira, Juan José, Butler, Alice, De La Vega Beltrán, José Luis, Treviño, Claudia L., Darszon, Alberto, Salkoff, Lawrence, Santi, Celia M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here we show how a sperm-specific potassium channel (SLO3) controls Ca2+ entry into sperm through a sperm-specific Ca2+ channel, CATSPER, in a totally unanticipated manner. The genetic deletion of either of those channels confers male infertility in mice. During sperm capacitation SLO3 hyperpolarizes the sperm, whereas CATSPER allows Ca2+ entry. These two channels may be functionally connected, but it had not been demonstrated that SLO3-dependent hyperpolarization is required for Ca2+ entry through CATSPER channels, nor has a functional mechanism linking the two channels been shown. In this study we show that Ca2+ entry through CATSPER channels is deficient in Slo3 mutant sperm lacking hyperpolarization; we also present evidence supporting the hypothesis that SLO3 channels activate CATSPER channels indirectly by promoting a rise in intracellular pH through a voltage-dependent mechanism. This mechanism may work through a Na+/H+ exchanger (sNHE) and/or a bicarbonate transporter, which utilizes the inward driving force of the Na+ gradient, rendering it intrinsically voltage-dependent. In addition, the sperm-specific Na+/H+ exchanger (sNHE) possess a putative voltage sensor that might be activated by membrane hyperpolarization, thus increasing the voltage sensitivity of internal alkalization.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M114.607556