Orexin/Hypocretin Activates mTOR Complex 1 (mTORC1) via an Erk/Akt-independent and Calcium-stimulated Lysosome v-ATPase Pathway

The lack of the neuropeptide orexin, also known as hypocretin, results in narcolepsy, a chronic sleep disorder characterized by frequent sleep/cataplexy attacks and rapid eye movement sleep abnormalities. However, the downstream pathways of orexin signaling are not clearly understood. Here, we show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2014-11, Vol.289 (46), p.31950-31959
Hauptverfasser: Wang, Zhiqiang, Liu, Shimeng, Kakizaki, Miyo, Hirose, Yuuki, Ishikawa, Yukiko, Funato, Hiromasa, Yanagisawa, Masashi, Yu, Yonghao, Liu, Qinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lack of the neuropeptide orexin, also known as hypocretin, results in narcolepsy, a chronic sleep disorder characterized by frequent sleep/cataplexy attacks and rapid eye movement sleep abnormalities. However, the downstream pathways of orexin signaling are not clearly understood. Here, we show that orexin activates the mTOR pathway, a central regulator of cell growth and metabolism, in the mouse brain and multiple recombinant cell lines that express the G protein-coupled receptors (GPCRs), orexin 1 receptor (OX1R) or orexin 2 receptor (OX2R). This orexin/GPCR-stimulated mTOR activation is sensitive to rapamycin, an inhibitor of mTOR complex 1 (mTORC1) but is independent of two well known mTORC1 activators, Erk and Akt. Rather, our studies indicate that orexin activates mTORC1 via extracellular calcium influx and the lysosome pathway involving v-ATPase and Rag GTPases. Moreover, a cytoplasmic calcium transient is sufficient to mimic orexin/GPCR signaling to mTORC1 activation in a v-ATPase-dependent manner. Together, our studies suggest that the mTORC1 pathway functions downstream of orexin/GPCR signaling, which plays a crucial role in many physiological and metabolic processes.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M114.600015