miR-200c inhibits invasion, migration and proliferation of bladder cancer cells through down-regulation of BMI-1 and E2F3

MicroRNA-200c (miR-200c) is one of the short noncoding RNAs that play crucial roles in tumorigenesis and tumor progression. It also acts as considerable modulator in the process of epithelial-to-mesenchymal transition (EMT), a cell development regulating process that affects tumor development and me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of translational medicine 2014-11, Vol.12 (1), p.305-305, Article 305
Hauptverfasser: Liu, Lei, Qiu, Mingning, Tan, Guobin, Liang, Ziji, Qin, Yue, Chen, Lieqian, Chen, Hege, Liu, Jianjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MicroRNA-200c (miR-200c) is one of the short noncoding RNAs that play crucial roles in tumorigenesis and tumor progression. It also acts as considerable modulator in the process of epithelial-to-mesenchymal transition (EMT), a cell development regulating process that affects tumor development and metastasis. However, the role of miR-200c in bladder cancer cells and its mechanism has not been well studied. The purpose of this study was to determine the potential role of miR-200c in regulating EMT and how it contributed to bladder cancer cells in invasion, migration and proliferation. Real-time reverse transcription-PCR was used to identify and validate the differential expression of MiR-200c involved in EMT in 4 bladder cancer cell lines and clinical specimens. A list of potential miR-200 direct targets was identified through the TargetScan database. The precursor of miR-200c was over-expressed in UMUC-3 and T24 cells using a lentivirus construct, respectively. Protein expression and signaling pathway modulation were validated through Western blot analysis and confocal microscopy, whereas BMI-1 and E2F3, direct target of miR-200c, were validated by using the wild-type and mutant 3'-untranslated region BMI-1/E2F3 luciferase reporters. We demonstrate that MiR-200c is down-regulated in bladder cancer specimens compared with adjacent ones in the same patient. Luciferase assays showed that the direct down-regulation of BMI-1 and E2F3 were miR-200c-dependent because mutations in the two putative miR-200c-binding sites have rescued the inhibitory effect. Over-expression of miR-200c in bladder cancer cells resulted in significantly decreased the capacities of cell invasion, migration and proliferation. miR-200c over-expression resulted in conspicuous down-regulation of BMI-1 and E2F3 expression and in a concomitant increase in E-cadherin levels. miR-200c appears to control the EMT process through BMI-1 in bladder cancer cells, and it inhibits their proliferation through down-regulating E2F3. The targets of miR-200c include BMI-1 and E2F3, which are a novel regulator of EMT and a regulator of proliferation, respectively.
ISSN:1479-5876
1479-5876
DOI:10.1186/s12967-014-0305-z