Genome-wide analysis of Cyclophilin gene family in soybean (Glycine max)
Cyclophilins (CYPs) belong to the immunophilin superfamily, and have peptidyl-prolyl cis-trans isomerase (PPIase) activity. PPIase catalyzes cis- and trans-rotamer interconversion of the peptidyl-prolyl amide bond of peptides, a rate-limiting step in protein folding. Studies have demonstrated the im...
Gespeichert in:
Veröffentlicht in: | BMC plant biology 2014-10, Vol.14 (1), p.282-282, Article 282 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cyclophilins (CYPs) belong to the immunophilin superfamily, and have peptidyl-prolyl cis-trans isomerase (PPIase) activity. PPIase catalyzes cis- and trans-rotamer interconversion of the peptidyl-prolyl amide bond of peptides, a rate-limiting step in protein folding. Studies have demonstrated the importance of many PPIases in plant biology, but no genome-wide analysis of the CYP gene family has been conducted for a legume species.
Here we performed a comprehensive database survey and identified a total of 62 CYP genes, located on 18 different chromosomes in the soybean genome (GmCYP1 to GmCYP62), of which 10 are multi- and 52 are single-domain proteins. Most of the predicted GmCYPs clustered together in pairs, reflecting the ancient genome duplication event. Analysis of gene structure revealed the presence of introns in protein-coding regions as well as in 5' and 3' untranslated regions, and that their size, abundance and distribution varied within the gene family. Expression analysis of GmCYP genes in soybean tissues displayed their differential tissue specific expression patterns.
Overall, we have identified 62 CYP genes in the soybean genome, the largest CYP gene family known to date. This is the first genome-wide study of the CYP gene family of a legume species. The expansion of GmCYP genes in soybean, and their distribution pattern on the chromosomes strongly suggest genome-wide segmental and tandem duplications. |
---|---|
ISSN: | 1471-2229 1471-2229 |
DOI: | 10.1186/s12870-014-0282-7 |