BI-09EphA3 RECEPTOR IS A MOLECULAR TARGET EXPRESSED IN MULTIPLE COMPARTMENTS OF GBM
Eph receptor A3 belongs to the Eph family of receptor tyrosine kinases playing critical roles in cancer. We and others found this receptor to be over-expressed in Glioblastoma (GBM), but not in normal brain. EphA3 is a plasma membrane receptor, which is internalized upon ligand binding making it as...
Gespeichert in:
Veröffentlicht in: | Neuro-oncology (Charlottesville, Va.) Va.), 2014-11, Vol.16 (Suppl 5), p.v25-v25 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Eph receptor A3 belongs to the Eph family of receptor tyrosine kinases playing critical roles in cancer. We and others found this receptor to be over-expressed in Glioblastoma (GBM), but not in normal brain. EphA3 is a plasma membrane receptor, which is internalized upon ligand binding making it as an attractive target for specific drug delivery. EphA3 overexpression was found in tumor cells and tumor-initiating cells in GBM. However, we noted that EphA3-positive cells localize around the neovasculature, being consistent with tumor-infiltrating cells. Therefore, we decided to analyze EphA3 in relation to microglia/macrophages, as these cells highly infiltrate GBM favoring tumor progression. It has been demonstrated that glioma-infiltrating microglia acquire the M2 phenotype expressing CD163 and CD204 markers. Co-localization studies using immunofluorescence on tumor-derived primary cells showed that EphA3 co-localizes with CD163 on a sub-population of cells. The two markers also highly co-localize in snap-frozen sections of human GBM specimens, mainly in the perivascular region, as well as on cells within the bulk of the tumor and in the invasive ring, but not on the contralateral side of the diseased brain. EphA3 on snap-frozen specimens co-localized also with CD68, a more general macrophages marker, confirming the presence of EphA3 on these bone marrow-derived cells. Microglia/ macrophages have been shown also around tumor necrotic areas. We cultured GBM cells under normoxia, hypoxia and anoxia conditions and found that the levels of EphA3 receptor increased under anoxia compared to hypoxia, following the same pattern seen with CD163 and CD204. We have already generated a novel and specific cytotoxin capable of activating and internalizing the receptor and potently killing EphA3-overexpressing cells. In this study we demonstrate that by utilizing the EphA3 receptor, we will target not only tumor and tumor-initiating cells, but also infiltrating cells active in promoting glioma cell migration and growth. |
---|---|
ISSN: | 1522-8517 1523-5866 |
DOI: | 10.1093/neuonc/nou239.9 |