PUCK: An Automated Prompting System for Smart Environments: Towards achieving automated prompting; Challenges involved

The growth in popularity of smart environments has been quite steep in the last decade and so has the demand for smart health assistance systems. A smart home-based prompting system can enhance these technologies to deliver in-home interventions to users for timely reminders or brief instructions de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Personal and ubiquitous computing 2012-10, Vol.16 (7), p.859-873
Hauptverfasser: Das, Barnan, Cook, Diane J, Schmitter-Edgecombe, Maureen, Seelye, Adriana M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The growth in popularity of smart environments has been quite steep in the last decade and so has the demand for smart health assistance systems. A smart home-based prompting system can enhance these technologies to deliver in-home interventions to users for timely reminders or brief instructions describing the way a task should be done for successful completion. This technology is in high demand given the desire of people who have physical or cognitive limitations to live independently in their homes. In this paper, with the introduction of the "PUCK" prompting system, we take an approach to automate prompting-based interventions without any predefined rule sets or user feedback. Unlike other approaches, we use simple off-the-shelf sensors and learn the timing for prompts based on real data that is collected with volunteer participants in our smart home test bed. The data mining approaches taken to solve this problem come with the challenge of an imbalanced class distribution that occurs naturally in the data. We propose a variant of an existing sampling technique, SMOTE, to deal with the class imbalance problem. To validate the approach, a comparative analysis with Cost Sensitive Learning is performed.
ISSN:1617-4909
1617-4917
DOI:10.1007/s00779-011-0445-6