Evolutionary expansion of a regulatory network by counter-silencing
Horizontal gene transfer plays a major role in bacterial evolution. Successful acquisition of new genes requires their incorporation into existing regulatory networks. This study compares the regulation of conserved genes in the PhoPQ regulon of Salmonella enterica serovar Typhimurium with that of P...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-10, Vol.5 (1), p.5270-5270, Article 5270 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Horizontal gene transfer plays a major role in bacterial evolution. Successful acquisition of new genes requires their incorporation into existing regulatory networks. This study compares the regulation of conserved genes in the PhoPQ regulon of
Salmonella enterica
serovar Typhimurium with that of PhoPQ-regulated horizontally acquired genes, which are silenced by the histone-like protein H-NS. We demonstrate that PhoP upregulates conserved and horizontally acquired genes by distinct mechanisms. Conserved genes are regulated by classical PhoP-mediated activation and are invariant in promoter architecture, whereas horizontally acquired genes exhibit variable promoter architecture and are regulated by PhoP-mediated counter-silencing. Biochemical analyses show that a horizontally acquired promoter adopts different structures in the silenced and counter-silenced states, implicating the remodelling of the H-NS nucleoprotein filament and the subsequent restoration of open-complex formation as the central mechanism of counter-silencing. Our results indicate that counter-silencing is favoured in the regulatory integration of newly acquired genes because it is able to accommodate multiple promoter architectures.
Genes acquired by horizontal transfer must be incorporated into existing regulatory networks to become functional. Here, Will
et al
. show that conserved and horizontally acquired PhoP-regulated genes in
Salmonella
are regulated by distinct mechanisms, defined by promoter architecture. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms6270 |