The tumour suppressor Ras-association domain family protein 1A (RASSF1A) regulates TNF-α signalling in cardiomyocytes

Tumour necrosis factor-α (TNF-α) plays a key role in the regulation of cardiac contractility. Although cardiomyocytes are known to express the TNF-α receptors (TNFRs), the mechanism of TNF-α signal transmission is incompletely understood. The aim of this study was to investigate whether the tumour s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular research 2014-07, Vol.103 (1), p.47-59
Hauptverfasser: Mohamed, Tamer M A, Zi, Min, Prehar, Sukhpal, Maqsood, Arfa, Abou-Leisa, Riham, Nguyen, Loan, Pfeifer, Gerd P, Cartwright, Elizabeth J, Neyses, Ludwig, Oceandy, Delvac
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tumour necrosis factor-α (TNF-α) plays a key role in the regulation of cardiac contractility. Although cardiomyocytes are known to express the TNF-α receptors (TNFRs), the mechanism of TNF-α signal transmission is incompletely understood. The aim of this study was to investigate whether the tumour suppressor Ras-association domain family protein 1 isoform A (RASSF1A) modulates TNF-α signalling in cardiomyocytes. We used RASSF1A knockout (RASSF1A(-/-)) mice and wild-type (WT) littermates in this study. Acute stimulation with a low dose of TNF-α (10 µg/kg iv) increased cardiac contractility and intracellular calcium transients' amplitude in WT mice. In contrast, RASSF1A(-/-) mice showed a blunted contractile response. Mechanistically, RASSF1A was essential in the formation of the TNFR complex (TNFRC), where it functions as an adaptor molecule to facilitate the recruitment of TNFR type 1-associated death domain protein and TNFR-associated factor 2 to form the TNF-α receptor complex. In the absence of RASSF1A, signal transmission from the TNF-α receptor complex to the downstream effectors, such as cytoplasmic phospholipase A2 and protein kinase A, was attenuated leading to the reduction in the activation of calcium handling molecules, such as L-type Ca(2+) channel and ryanodine receptors. Our data indicate an essential role of RASSF1A in regulating TNF-α signalling in cardiomyocytes, with RASSF1A being key in the formation of the TNFRC and in signal transmission to the downstream targets.
ISSN:0008-6363
1755-3245
DOI:10.1093/cvr/cvu111