The miR-155-PU.1 axis acts on Pax5 to enable efficient terminal B cell differentiation
A single microRNA (miRNA) can regulate the expression of many genes, though the level of repression imparted on any given target is generally low. How then is the selective pressure for a single miRNA/target interaction maintained across long evolutionary distances? We addressed this problem by disr...
Gespeichert in:
Veröffentlicht in: | The Journal of experimental medicine 2014-10, Vol.211 (11), p.2183-2198 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A single microRNA (miRNA) can regulate the expression of many genes, though the level of repression imparted on any given target is generally low. How then is the selective pressure for a single miRNA/target interaction maintained across long evolutionary distances? We addressed this problem by disrupting in vivo the interaction between miR-155 and PU.1 in mice. Remarkably, this interaction proved to be key to promoting optimal T cell-dependent B cell responses, a previously unrecognized role for PU.1. Mechanistically, miR-155 inhibits PU.1 expression, leading to Pax5 down-regulation and the initiation of the plasma cell differentiation pathway. Additional PU.1 targets include a network of genes whose products are involved in adhesion, with direct links to B-T cell interactions. We conclude that the evolutionary adaptive selection of the miR-155-PU.1 interaction is exercised through the effectiveness of terminal B cell differentiation. |
---|---|
ISSN: | 0022-1007 1540-9538 |
DOI: | 10.1084/jem.20140338 |