Fabrication of nanofluidic diodes with polymer nanopores modified by atomic layer deposition
Surface charge distribution is a crucial factor for the ionic transport properties inside nanopores. Modifying the surface charge inside a single conical nanopore can greatly affect the rectification behavior of the ionic current through the nanopore and afford nanofluidic diodes. In this work, we d...
Gespeichert in:
Veröffentlicht in: | Biomicrofluidics 2014-09, Vol.8 (5), p.052111-052111 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surface charge distribution is a crucial factor for the ionic transport properties inside nanopores. Modifying the surface charge inside a single conical nanopore can greatly affect the rectification behavior of the ionic current through the nanopore and afford nanofluidic diodes. In this work, we describe a new method to fabricate nanofluidic diodes by atomic layer deposition (ALD) on conical track-etched nanopores. Thorough investigation of the ionic transport behavior through ALD-modified polyethylene terephthalate (PET) nanopores is carried out. Our results demonstrate that ALD is a simple and effective method to modify the inner surface of the polymer nanopores for fabricating nanofluidic devices. In addition, we also investigate the stability of the ALD-modified nanopores, and the results suggest that the long-time stability could be compromised by high voltage applied along the nanopore. |
---|---|
ISSN: | 1932-1058 1932-1058 |
DOI: | 10.1063/1.4896474 |