Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings

Zinc (Zn) is an essential micronutrient for higher plants; yet, at higher concentrations it is toxic. In order to explore the effect of Zn stress on growth, biochemical, physiological and ultra-structural changes, 1 year old mandarin plants were grown under various Zn concentrations (1, 2, 3, 4, 5,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiology and molecular biology of plants 2014-10, Vol.20 (4), p.461-473
Hauptverfasser: Subba, Pratap, Mukhopadhyay, Mainaak, Mahato, Suresh Kumar, Bhutia, Karma Diki, Mondal, Tapan Kumar, Ghosh, Swapan Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zinc (Zn) is an essential micronutrient for higher plants; yet, at higher concentrations it is toxic. In order to explore the effect of Zn stress on growth, biochemical, physiological and ultra-structural changes, 1 year old mandarin plants were grown under various Zn concentrations (1, 2, 3, 4, 5, 10 15 and 20 mM) for 14 weeks. The biomass of the plants increased with increasing Zn concentrations and finally declined under excess Zn concentration but the prime increase was observed at 4 and 5 mM Zn. Zn stress reduced the photosynthetic rate, stomatal conductance, and transpiration along with reduction of chlorophyll a, chlorophyll b, and carotenoids content in leaf. Superoxide anion, malondialdehyde, hydrogen peroxide and electrolyte leakage were elevated in Zn stressed plants. The activities of ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6), superoxide dismutase (EC 1.15.1.1) and peroxidase (EC 1.11.1.7) enzymes were increased in both Zn-deficient and Zn-excess plants. Therefore it is suggested that antioxidant defense system did not sufficiently protect the plants under rigorous Zn stress which was also corroborated by the alteration in cell ultrastructure as revealed by transmission electron microscopy.
ISSN:0971-5894
0974-0430
DOI:10.1007/s12298-014-0254-2