Krebs Cycle Metabolite Profiling for Identification and Stratification of Pheochromocytomas/Paragangliomas due to Succinate Dehydrogenase Deficiency
Context: Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations. Objective: We assessed whether altered succinate dehydrogenase product...
Gespeichert in:
Veröffentlicht in: | The journal of clinical endocrinology and metabolism 2014-10, Vol.99 (10), p.3903-3911 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Context:
Mutations of succinate dehydrogenase A/B/C/D genes (SDHx) increase susceptibility to development of pheochromocytomas and paragangliomas (PPGLs), with particularly high rates of malignancy associated with SDHB mutations.
Objective:
We assessed whether altered succinate dehydrogenase product-precursor relationships, manifested by differences in tumor ratios of succinate to fumarate or other metabolites, might aid in identifying and stratifying patients with SDHx mutations.
Design, Setting, and Patients:
PPGL tumor specimens from 233 patients, including 45 with SDHx mutations, were provided from eight tertiary referral centers for mass spectrometric analyses of Krebs cycle metabolites.
Main Outcome Measure:
Diagnostic performance of the succinate:fumarate ratio for identification of pathogenic SDHx mutations.
Results:
SDH-deficient PPGLs were characterized by 25-fold higher succinate and 80% lower fumarate, cis-aconitate, and isocitrate tissue levels than PPGLs without SDHx mutations. Receiver-operating characteristic curves for use of ratios of succinate to fumarate or to cis-aconitate and isocitrate to identify SDHx mutations indicated areas under curves of 0.94 to 0.96; an optimal cut-off of 97.7 for the succinate:fumarate ratio provided a diagnostic sensitivity of 93% at a specificity of 97% to identify SDHX-mutated PPGLs. Succinate:fumarate ratios were higher in both SDHB-mutated and metastatic tumors than in those due to SDHD/C mutations or without metastases.
Conclusions:
Mass spectrometric-based measurements of ratios of succinate:fumarate and other metabolites in PPGLs offer a useful method to identify patients for testing of SDHx mutations, with additional utility to quantitatively assess functionality of mutations and metabolic factors responsible for malignant risk. |
---|---|
ISSN: | 0021-972X 1945-7197 |
DOI: | 10.1210/jc.2014-2151 |