Chemically diverse polymer microarrays and high throughput surface characterisation: a method for discovery of materials for stem cell culture† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4bm00054d Click here for additional data file
Chemically diverse polymer microarrays as a powerful screening tool for the discovery of new materials for a variety of applications. Materials discovery provides the opportunity to identify novel materials that are tailored to complex biological environments by using combinatorial mixing of monomer...
Gespeichert in:
Veröffentlicht in: | Biomaterials science 2014-05, Vol.2 (11), p.1604-1611 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemically diverse polymer microarrays as a powerful screening tool for the discovery of new materials for a variety of applications.
Materials discovery provides the opportunity to identify novel materials that are tailored to complex biological environments by using combinatorial mixing of monomers to form large libraries of polymers as micro arrays. The materials discovery approach is predicated on the use of the largest chemical diversity possible, yet previous studies into human pluripotent stem cell (hPSC) response to polymer microarrays have been limited to 20 or so different monomer identities in each study. Here we show that it is possible to print and assess cell adhesion of 141 different monomers in a microarray format. This provides access to the largest chemical space to date, allowing us to meet the regenerative medicine challenge to provide scalable synthetic culture ware. This study identifies new materials suitable for hPSC expansion that could not have been predicted from previous knowledge of cell-material interactions. |
---|---|
ISSN: | 2047-4830 2047-4849 |
DOI: | 10.1039/c4bm00054d |