Analysis of time-series gene expression data: methods, challenges, and opportunities

Monitoring the change in expression patterns over time provides the distinct possibility of unraveling the mechanistic drivers characterizing cellular responses. Gene arrays measuring the level of mRNA expression of thousands of genes simultaneously provide a method of high-throughput data collectio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of biomedical engineering 2007-01, Vol.9 (1), p.205-228
Hauptverfasser: Androulakis, I P, Yang, E, Almon, R R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monitoring the change in expression patterns over time provides the distinct possibility of unraveling the mechanistic drivers characterizing cellular responses. Gene arrays measuring the level of mRNA expression of thousands of genes simultaneously provide a method of high-throughput data collection necessary for obtaining the scope of data required for understanding the complexities of living organisms. Unraveling the coherent complex structures of transcriptional dynamics is the goal of a large family of computational methods aiming at upgrading the information content of time-course gene expression data. In this review, we summarize the qualitative characteristics of these approaches, discuss the main challenges that this type of complex data present, and, finally, explore the opportunities in the context of developing mechanistic models of cellular response.
ISSN:1523-9829
1545-4274
DOI:10.1146/annurev.bioeng.9.060906.151904