Dynamic loading of electrospun yarns guides mesenchymal stem cells towards a tendon lineage

Alternative strategies are required when autograft tissue is not sufficient or available to reconstruct damaged tendons. Electrospun fibre yarns could provide such an alternative. This study investigates the seeding of human mesenchymal stem cells (hMSC) on electrospun yarns and their response when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2014-11, Vol.39, p.175-183
Hauptverfasser: Bosworth, L.A., Rathbone, S.R., Bradley, R.S., Cartmell, S.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alternative strategies are required when autograft tissue is not sufficient or available to reconstruct damaged tendons. Electrospun fibre yarns could provide such an alternative. This study investigates the seeding of human mesenchymal stem cells (hMSC) on electrospun yarns and their response when subjected to dynamic tensile loading. Cell seeded yarns sustained 3600 cycles per day for 21 days. Loaded yarns demonstrated a thickened cell layer around the scaffold׳s exterior compared to statically cultured yarns, which would suggest an increased rate of cell proliferation and/or matrix deposition, whilst maintaining a predominant uniaxial cell orientation. Tensile properties of cell-seeded yarns increased with time compared to acellular yarns. Loaded scaffolds demonstrated an up-regulation in several key tendon genes, including collagen Type I. This study demonstrates the support of hMSCs on electrospun yarns and their differentiation towards a tendon lineage when mechanically stimulated. [Display omitted]
ISSN:1751-6161
1878-0180
DOI:10.1016/j.jmbbm.2014.07.009