Lyophilized Chitosan/xanthan Polyelectrolyte Complex Based Mucoadhesive Inserts for Nasal Delivery of Promethazine Hydrochloride

The objective of this investigation was the development of chitosan/xanthan polyelectrolyte complex based mucoadhesive nasal insert of promethazine hydrochloride a drug used in the treatment of motion sickness. A 3(2) factorial design was applied for preparing chitosan/xanthan polyelectrolyte comple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of pharmaceutical research : IJPR 2014, Vol.13 (3), p.769-784
Hauptverfasser: G Dehghan, Mohamed Hassan, Marzuka, Marzuka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this investigation was the development of chitosan/xanthan polyelectrolyte complex based mucoadhesive nasal insert of promethazine hydrochloride a drug used in the treatment of motion sickness. A 3(2) factorial design was applied for preparing chitosan/xanthan polyelectrolyte complex and to study the effect of independent variables i.e. concentration of xanthan [X1] and concentration of chitosan [X2] on various responses i.e. viscosity of polyelectrolyte complex solution, water uptake of nasal inserts (at pH 2, 5.5, 7.4), bioadhesion potential of nasal inserts and in-vitro drug release at Q6h through nasal inserts. FTIR and DSC analysis were carried out to confirm complex formation and on loaded and unloaded nasal insert to investigate any drug excipient interaction. The nasal inserts were also characterized by powder X-ray diffractometry (PXRD) and Scanning electron microscopy (SEM) and for ex-vivo permeation studies. The results show that higher amount of xanthan in polyelectrolyte complexes with respect to higher amount of chitosan retarded in-vitro drug release. The water uptake behaviour of nasal insert was strongly influenced by pH of the medium and by polycation/ polyanion concentration. The investigation verifies the formation of polyelectrolyte complexes formation between chitosan and xanthan at pH values in the vicinity of pKa intervals of the two polymers and confirms their potential for the nasal delivery of promethazine hydrochloride.
ISSN:1735-0328
1726-6890