Bioethanol production from rice straw by popping pretreatment

BACKGROUND: Rice straw has considerable potential as a raw material for bioethanol production. Popping pretreatment of rice straw prior to downstream enzymatic hydrolysis and fermentation was found to increase cellulose to glucose conversion efficiency. The aim of this study was to investigate the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology for biofuels 2013-11, Vol.6 (1), p.166-166, Article 166
Hauptverfasser: Wi, Seung Gon, Choi, In Seong, Kim, Kyoung Hyoun, Kim, Ho Myeong, Bae, Hyeun-Jong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND: Rice straw has considerable potential as a raw material for bioethanol production. Popping pretreatment of rice straw prior to downstream enzymatic hydrolysis and fermentation was found to increase cellulose to glucose conversion efficiency. The aim of this study was to investigate the influence of popping pretreatment and determine the optimal enzyme loading using a surface response design. RESULTS: The optimal doses of cellulase and xylanase enzymes were 23 FPU and 62 IU/g biomass, respectively. Using the optimized enzyme condition and popping pretreatment of rice straw (15% substrate loading, w/v), a sugar recovery of 0.567 g/g biomass (glucose; 0.394 g/g) was obtained in 48 h, which was significantly higher than that from untreated rice straw (total sugar recovery; 0.270 g/g biomass). Fermentation of the hydrolyzates by Saccharomyces cerevisiae resulted in 0.172 g ethanol/g biomass after 24 h, equivalent to 80.9% of the maximum theoretical yield (based on the amount of glucose in raw material). Changes in the chemical composition and surface area of rice straw were also investigated before and after popping pretreatment. The results showed little or no difference in chemical composition between the pretreated rice straw and the control. However, the surface area of pretreated rice straw increased twofold compared to the control. CONCLUSION: Popping pretreatment of rice straw can effectively improve downstream saccharification and fermentation, important for bioethanol production.
ISSN:1754-6834
1754-6834
DOI:10.1186/1754-6834-6-166