Motif-based analysis of large nucleotide data sets using MEME-ChIP

This protocol enables users to perform de novo motif discovery, motif enrichment analysis, motif location analysis, and motif clustering, providing a comprehensive picture of the DNA or RNA motifs that are enriched in the input sequences. MEME-ChIP is a web-based tool for analyzing motifs in large D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols 2014-06, Vol.9 (6), p.1428-1450
Hauptverfasser: Ma, Wenxiu, Noble, William S, Bailey, Timothy L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This protocol enables users to perform de novo motif discovery, motif enrichment analysis, motif location analysis, and motif clustering, providing a comprehensive picture of the DNA or RNA motifs that are enriched in the input sequences. MEME-ChIP is a web-based tool for analyzing motifs in large DNA or RNA data sets. It can analyze peak regions identified by ChIP-seq, cross-linking sites identified by CLIP-seq and related assays, as well as sets of genomic regions selected using other criteria. MEME-ChIP performs de novo motif discovery, motif enrichment analysis, motif location analysis and motif clustering, providing a comprehensive picture of the DNA or RNA motifs that are enriched in the input sequences. MEME-ChIP performs two complementary types of de novo motif discovery: weight matrix–based discovery for high accuracy; and word-based discovery for high sensitivity. Motif enrichment analysis using DNA or RNA motifs from human, mouse, worm, fly and other model organisms provides even greater sensitivity. MEME-ChIP's interactive HTML output groups and aligns significant motifs to ease interpretation. This protocol takes less than 3 h, and it provides motif discovery approaches that are distinct and complementary to other online methods.
ISSN:1754-2189
1750-2799
DOI:10.1038/nprot.2014.083