Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by the production of antibodies to self-nucleic acids, immune complex deposition, and tissue inflammation such as glomerulonephritis. Innate recognition of self-DNA and -RNA and the ensuing production of cytokines such as typ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of experimental medicine 2014-09, Vol.211 (10), p.1969-1976
Hauptverfasser: Sisirak, Vanja, Ganguly, Dipyaman, Lewis, Kanako L, Couillault, Coline, Tanaka, Lena, Bolland, Silvia, D'Agati, Vivette, Elkon, Keith B, Reizis, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by the production of antibodies to self-nucleic acids, immune complex deposition, and tissue inflammation such as glomerulonephritis. Innate recognition of self-DNA and -RNA and the ensuing production of cytokines such as type I interferons (IFNs) contribute to SLE development. Plasmacytoid dendritic cells (pDCs) have been proposed as a source of pathogenic IFN in SLE; however, their net contribution to the disease remains unclear. We addressed this question by reducing gene dosage of the pDC-specific transcription factor E2-2 (Tcf4), which causes a specific impairment of pDC function in otherwise normal animals. We report that global or DC-specific Tcf4 haplodeficiency ameliorated SLE-like disease caused by the overexpression of the endosomal RNA sensor Tlr7. Furthermore, Tcf4 haplodeficiency in the B6.Sle1.Sle3 multigenic model of SLE nearly abolished key disease manifestations including anti-DNA antibody production and glomerulonephritis. Tcf4-haplodeficient SLE-prone animals showed a reduction of the spontaneous germinal center reaction and its associated gene expression signature. These results provide genetic evidence that pDCs are critically involved in SLE pathogenesis and autoantibody production, confirming their potential utility as therapeutic targets in the disease.
ISSN:0022-1007
1540-9538
DOI:10.1084/jem.20132522