Chloroplast targeting factor AKR2 evolved from an ankyrin repeat domain coincidentally binds two chloroplast lipids
In organellogenesis of the chloroplast from endosymbiotic cyanobacterium, the establishment of protein targeting mechanisms to the chloroplast should have been pivotal. However, it is still mysterious how these mechanisms were established and how they work in plant cells. Here, we show that AKR2A, t...
Gespeichert in:
Veröffentlicht in: | Developmental cell 2014-09, Vol.30 (5), p.598-609 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In organellogenesis of the chloroplast from endosymbiotic cyanobacterium, the establishment of protein targeting mechanisms to the chloroplast should have been pivotal. However, it is still mysterious how these mechanisms were established and how they work in plant cells. Here, we show that AKR2A, the cytosolic targeting factor for chloroplast outer membrane (COM) proteins, evolved from the ankyrin repeat domain (ARD) of the host cell by stepwise extensions of its N-terminal domain, and two lipids monogalactosyldiacylglycerol (MGDG) and phosphatidylglycerol (PG) of the endosymbiont were selected to function as the AKR2A receptor. Structural analysis, molecular modeling and mutational analysis of the ARD identified two adjacent sites for coincidental and synergistic binding of MGDG and PG. Based on these findings, we propose that the targeting mechanism of COM proteins was established using components from both the endosymbiont and host cell through a modification of the protein-protein interacting ARD into a lipid binding domain. |
---|---|
ISSN: | 1534-5807 1878-1551 |
DOI: | 10.1016/j.devcel.2014.07.026 |