Human Islet Viability and Function Is Maintained During High-density Shipment in Silicone Rubber Membrane Vessels

Abstract Background The shipment of human islets (IE) from processing centers to distant laboratories is beneficial for both research and clinical applications. The maintenance of islet viability and function in transit is critically important. Gas-permeable silicone rubber membrane (SRM) vessels re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transplantation proceedings 2014-07, Vol.46 (6), p.1989-1991
Hauptverfasser: Kitzmann, J.P, Pepper, A.R, Gala-Lopez, B, Pawlick, R, Kin, T, O’Gorman, D, Mueller, K.R, Gruessner, A.C, Avgoustiniatos, E.S, Karatzas, T, Szot, G.L, Posselt, A.M, Stock, P.G, Wilson, J.R, Shapiro, A.M, Papas, K.K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background The shipment of human islets (IE) from processing centers to distant laboratories is beneficial for both research and clinical applications. The maintenance of islet viability and function in transit is critically important. Gas-permeable silicone rubber membrane (SRM) vessels reduce the risk of hypoxia-induced death or dysfunction during high-density islet culture or shipment. SRM vessels may offer additional advantages: they are cost-effective (fewer flasks, less labor needed), safer (lower contamination risk), and simpler (culture vessel can also be used for shipment). Method IE were isolated from two manufacturing centers and shipped in 10-cm2 surface area SRM vessels in temperature- and pressure-controlled containers to a distant center after at least 2 days of culture (n = 6). Three conditions were examined: low density (LD), high density (HD), and a microcentrifuge tube negative control (NC). LD was designed to mimic the standard culture density for IE preparations (200 IE/cm2 ), while HD was designed to have a 20-fold higher tissue density, which would enable the culture of an entire human isolation in 1–3 vessels. Upon receipt, islets were assessed for viability (measured by oxygen consumption rate normalized to DNA content [OCR/DNA)]), quantity (measured by DNA), and, when possible, potency and function (measured by dynamic glucose-stimulated insulin secretion measurements and transplants in immunodeficient B6 Rag+/− mice). Postshipment OCR/DNA was not reduced in HD vs LD and was substantially reduced in the NC condition. HD islets exhibited normal function postshipment. Based on the data, we conclude that entire islet isolations (up to 400,000 IE) may be shipped using a single, larger SRM vessel with no negative effect on viability and ex vivo and in vivo function.
ISSN:0041-1345
1873-2623
DOI:10.1016/j.transproceed.2014.06.002