Intranasal Administration as a Route for Drug Delivery to the Brain: Evidence for a Unique Pathway for Albumin
A variety of compounds will distribute into the brain when placed at the cribriform plate by intranasal (i.n.) administration. In this study, we investigated the ability of albumin, a protein that can act as a drug carrier but is excluded from brain by the blood-brain barrier, to distribute into the...
Gespeichert in:
Veröffentlicht in: | The Journal of pharmacology and experimental therapeutics 2014-10, Vol.351 (1), p.54-60 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A variety of compounds will distribute into the brain when placed at the cribriform plate by intranasal (i.n.) administration. In this study, we investigated the ability of albumin, a protein that can act as a drug carrier but is excluded from brain by the blood-brain barrier, to distribute into the brain after i.n. administration. We labeled bovine serum albumin with [125I] ([125I]Alb) and studied its uptake into 11 brain regions and its entry into the blood from 5 minutes to 6 hours after i.n. administration. [125I]Alb was present throughout the brain at 5 minutes. Several regions showed distinct peaks in uptake that ranged from 5 minutes (parietal cortex) to 60 minutes (midbrain). About 2–4% of the i.n. [125I]Alb entered the bloodstream. The highest levels occurred in the olfactory bulb and striatum. Distribution was dose-dependent, with less taken up by whole brain, cortex, and blood at the higher dose of albumin. Uptake was selectively increased into the olfactory bulb and cortex by the fluid-phase stimulator PMA (phorbol 12-myristate 13-acetate), but inhibitors to receptor-mediated transcytosis, caveolae, and phosphoinositide 3-kinase were without effect. Albumin altered the distribution of radioactive leptin given by i.n. administration, decreasing uptake into the blood and by the cerebellum and increasing uptake by the hypothalamus. We conclude that [125I]Alb administered i.n. reaches all parts of the brain through a dose-dependent mechanism that may involve fluid-phase transcytosis and, as illustrated by leptin, can affect the delivery of other substances to the brain after their i.n. administration. |
---|---|
ISSN: | 0022-3565 1521-0103 |
DOI: | 10.1124/jpet.114.216705 |