A novel human anti‐VCAM‐1 monoclonal antibody ameliorates airway inflammation and remodelling
Asthma is a chronic inflammatory disease induced by Type 2 helper T cells and eosinophils. Vascular cell adhesion molecule‐1 (VCAM‐1) has been implicated in recruiting eosinophils and lymphocytes to pathological sites in asthma as a regulatory receptor. Accordingly, monoclonal antibody (mAb) against...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2013-10, Vol.17 (10), p.1271-1281 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Asthma is a chronic inflammatory disease induced by Type 2 helper T cells and eosinophils. Vascular cell adhesion molecule‐1 (VCAM‐1) has been implicated in recruiting eosinophils and lymphocytes to pathological sites in asthma as a regulatory receptor. Accordingly, monoclonal antibody (mAb) against VCAM‐1 may attenuate allergic inflammation and pathophysiological features of asthma. We attempted to evaluate whether a recently developed human anti‐VCAM‐1 mAb can inhibit the pathophysiological features of asthma in a murine asthma model induced by ovalbumin (OVA). Leucocyte adhesion inhibition assay was performed to evaluate the in vitro blocking activity of human anti‐VCAM‐1 mAb. OVA‐sensitized BALB/c mice were treated with human anti‐VCAM‐1 mAb or isotype control Ab before intranasal OVA challenge. We evaluated airway hyperresponsiveness (AHR) and bronchoalveolar lavage fluid analysis, measured inflammatory cytokines and examined histopathological features. The human anti‐VCAM‐1 mAb bound to human and mouse VCAM‐1 molecules and inhibited adhesion of human leucocytes in vitro. AHR and inflammatory cell counts in bronchoalveolar lavage fluid were reduced in mice treated with human anti‐VCAM‐1 mAb as compared with a control Ab. The levels of interleukin (IL)‐5 and IL‐13, as well as transforming growth factor‐β, in lung tissue were decreased in treated mice. Human anti‐VCAM‐1 mAb reduced goblet cell hyperplasia and peribronchial fibrosis. In vivo VCAM‐1 expression decreased in the treated group. In conclusion, human anti‐VCAM‐1 mAb attenuated allergic inflammation and the pathophysiological features of asthma in OVA‐induced murine asthma model. The results suggested that human anti‐VCAM‐1 mAb could potentially be used as an additional anti‐asthma therapeutic medicine. |
---|---|
ISSN: | 1582-1838 1582-4934 |
DOI: | 10.1111/jcmm.12102 |