Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm
We present a new approach to automatic training of a eukaryotic ab initio gene finding algorithm. With the advent of Next-Generation Sequencing, automatic training has become paramount, allowing genome annotation pipelines to keep pace with the speed of genome sequencing. Earlier we developed GeneMa...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2014-09, Vol.42 (15), p.e119-e119 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a new approach to automatic training of a eukaryotic ab initio gene finding algorithm. With the advent of Next-Generation Sequencing, automatic training has become paramount, allowing genome annotation pipelines to keep pace with the speed of genome sequencing. Earlier we developed GeneMark-ES, currently the only gene finding algorithm for eukaryotic genomes that performs automatic training in unsupervised ab initio mode. The new algorithm, GeneMark-ET augments GeneMark-ES with a novel method that integrates RNA-Seq read alignments into the self-training procedure. Use of 'assembled' RNA-Seq transcripts is far from trivial; significant error rate of assembly was revealed in recent assessments. We demonstrated in computational experiments that the proposed method of incorporation of 'unassembled' RNA-Seq reads improves the accuracy of gene prediction; particularly, for the 1.3 GB genome of Aedes aegypti the mean value of prediction Sensitivity and Specificity at the gene level increased over GeneMark-ES by 24.5%. In the current surge of genomic data when the need for accurate sequence annotation is higher than ever, GeneMark-ET will be a valuable addition to the narrow arsenal of automatic gene prediction tools. |
---|---|
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/gku557 |