A modified data normalization method for GC-MS-based metabolomics to minimize batch variation
The goal of metabolomics data pre-processing is to eliminate systematic variation, such that biologically-related metabolite signatures are detected by statistical pattern recognition. Although several methods have been developed to tackle the issue of batch-to-batch variation, each method has its a...
Gespeichert in:
Veröffentlicht in: | SpringerPlus 2014-08, Vol.3 (1), p.439-439, Article 439 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The goal of metabolomics data pre-processing is to eliminate systematic variation, such that biologically-related metabolite signatures are detected by statistical pattern recognition. Although several methods have been developed to tackle the issue of batch-to-batch variation, each method has its advantages and disadvantages. In this study, we used a reference sample as a normalization standard for test samples within the same batch, and each metabolite value is expressed as a ratio relative to its counterpart in the reference sample. We then applied this approach to a large multi-batch data set to facilitate intra- and inter-batch data integration. Our results demonstrate that normalization to a single reference standard has the potential to minimize batch-to-batch data variation across a large, multi-batch data set. |
---|---|
ISSN: | 2193-1801 2193-1801 |
DOI: | 10.1186/2193-1801-3-439 |