Clinical Evaluation of a Novel System for Monitoring Surgical Hemoglobin Loss
BACKGROUND:Accurate measurement of intraoperative blood loss is an important clinical variable in managing fluid resuscitation and avoiding unnecessary transfusion of blood products. In this study, blood lost onto laparotomy sponges during surgical cases was measured using a tablet computer programm...
Gespeichert in:
Veröffentlicht in: | Anesthesia and analgesia 2014-09, Vol.119 (3), p.588-594 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BACKGROUND:Accurate measurement of intraoperative blood loss is an important clinical variable in managing fluid resuscitation and avoiding unnecessary transfusion of blood products. In this study, blood lost onto laparotomy sponges during surgical cases was measured using a tablet computer programmed with a unique algorithm modeled after facial recognition technology. In this study, we assessed the accuracy and performance of the system in surgical cases.
METHODS:In this prospective, multicenter study, 46 patients undergoing surgery with anticipated significant blood loss contributed laparotomy sponges for hemoglobin (Hb) loss measurement using the Triton System with Feature Extraction Technology (Gauss Surgical, Inc., Los Altos, CA). The Hb loss measured by the new system was compared with that measured by manual rinsing of the sponges. Accuracy was evaluated using linear regression and Bland-Altman analysis. In addition, the new system’s calculation of blood volume loss was compared with the gravimetric method of estimating blood loss from intraoperative sponge weights.
RESULTS:A significant positive linear correlation was noted between the new system’s measurements and the rinsed Hb mass (r = 0.93, P < 0.0001). Bland-Altman analysis revealed a bias of 9.0 g and narrow limits of agreement (−7.5 to 25.5 g) between the new system’s measures and the rinsed Hb mass. These limits were within the clinically relevant difference of ±30 g, which is approximately half of the Hb content of a unit of allogeneic whole blood. Bland-Altman analysis of the estimated blood loss on sponges using the gravimetric method demonstrated a bias of 466 mL (overestimation) with limits of agreement of −171 and 1103 mL, due to the presence of contaminants other than blood on the laparotomy sponges.
CONCLUSIONS:The novel mobile monitoring system provides an accurate measurement of Hb mass on surgical sponges as compared with that of manual rinsing measurements and is significantly more accurate than the gravimetric method. Further study is warranted to assess the clinical use of the technology. |
---|---|
ISSN: | 0003-2999 1526-7598 |
DOI: | 10.1213/ANE.0000000000000181 |