Inhibition of hepatitis B virus expression and replication by RNA interference in HepG2.2.15

AIM: To observe the inhibition of hepatitis B virus replication and expression by transfecting vector-based small interference RNA (siRNA) pGenesiI-HBV X targeting HBV X gene region into HepG2.2.15 cells. METHODS:pGenesil-HBV X was constructed and transfected into HepG2.2.15 cells via lipofection. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of gastroenterology : WJG 2006-10, Vol.12 (37), p.6046-6049
Hauptverfasser: Zhao, Zhong-Fu, Yang, Hui, Han, De-Wu, Zhao, Long-Feng, Zhang, Guo-Ying, Zhang, Yun, Liu, Ming-She
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:AIM: To observe the inhibition of hepatitis B virus replication and expression by transfecting vector-based small interference RNA (siRNA) pGenesiI-HBV X targeting HBV X gene region into HepG2.2.15 cells. METHODS:pGenesil-HBV X was constructed and transfected into HepG2.2.15 cells via lipofection. HBV antigen secretion was determined 24, 48, and 72 h after transfection by time-resolved immunofluorometric assays (TRFIA). HBV replication was examined by fluorescence quantitative PCR, and the expression of cytoplasmic viral proteins was determined by immunohistochemistry. RESULTS: The secretion of HBsAg and HBeAg into the supernatant was found to be inhibited by 28.5% and 32.2% (P 〈 0.01), and by 38.67% (P 〈 0.05) and 42.86% (P 〈 0.01) at 48 h and 72 h after pGenesil-HBV X transfection, respectively. Immunohistochemical staining for cytoplasmic HBsAg showed a similar decline in HepG2.2.15 cells 48 h after transfection. The number of HBV genomes within culture supernatants was also significantly decreased 48 h and 72 h post-transfection as quantified by fluorescence PCR (P 〈 0.05). CONCLUSION: In HepG2.2.15 cells, HBV replication and expression is inhibited by vector-based siRNA pGenesil- HBV X targeting the HBV X coding region.
ISSN:1007-9327
2219-2840
DOI:10.3748/wjg.v12.i37.6046