Solitary wave solutions of the fourth order Boussinesq equation through the exp(–Ф(η))-expansion method
The exp(–Ф( η ))-expansion method is an ascending method for obtaining exact and solitary wave solutions for nonlinear evolution equations. In this article, we implement the exp(–Ф( η ))-expansion method to build solitary wave solutions to the fourth order Boussinesq equation. The procedure is simpl...
Gespeichert in:
Veröffentlicht in: | SpringerPlus 2014-07, Vol.3 (1), p.344-344, Article 344 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The exp(–Ф(
η
))-expansion method is an ascending method for obtaining exact and solitary wave solutions for nonlinear evolution equations. In this article, we implement the exp(–Ф(
η
))-expansion method to build solitary wave solutions to the fourth order Boussinesq equation. The procedure is simple, direct and useful with the help of computer algebra. By using this method, we obtain solitary wave solutions in terms of the hyperbolic functions, the trigonometric functions and elementary functions. The results show that the exp(–Ф(
η
))-expansion method is straightforward and effective mathematical tool for the treatment of nonlinear evolution equations in mathematical physics and engineering.
Mathematics subject classifications
35C07; 35C08; 35P99 |
---|---|
ISSN: | 2193-1801 2193-1801 |
DOI: | 10.1186/2193-1801-3-344 |