Solitary wave solutions of the fourth order Boussinesq equation through the exp(–Ф(η))-expansion method

The exp(–Ф( η ))-expansion method is an ascending method for obtaining exact and solitary wave solutions for nonlinear evolution equations. In this article, we implement the exp(–Ф( η ))-expansion method to build solitary wave solutions to the fourth order Boussinesq equation. The procedure is simpl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SpringerPlus 2014-07, Vol.3 (1), p.344-344, Article 344
Hauptverfasser: Akbar, M Ali, Ali, Norhashidah Hj Mohd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exp(–Ф( η ))-expansion method is an ascending method for obtaining exact and solitary wave solutions for nonlinear evolution equations. In this article, we implement the exp(–Ф( η ))-expansion method to build solitary wave solutions to the fourth order Boussinesq equation. The procedure is simple, direct and useful with the help of computer algebra. By using this method, we obtain solitary wave solutions in terms of the hyperbolic functions, the trigonometric functions and elementary functions. The results show that the exp(–Ф( η ))-expansion method is straightforward and effective mathematical tool for the treatment of nonlinear evolution equations in mathematical physics and engineering. Mathematics subject classifications 35C07; 35C08; 35P99
ISSN:2193-1801
2193-1801
DOI:10.1186/2193-1801-3-344