Disease-causing mutations associated with four bestrophinopathies exhibit disparate effects on the localization, but not the oligomerization, of Bestrophin-1

BEST1 encodes Bestrophin-1 (Best1), a homo-oligomeric, integral membrane protein localized to the basolateral plasma membrane of the retinal pigment epithelium. Mutations in BEST1 cause five distinct retinal degenerative diseases, including adult vitelliform macular dystrophy (AVMD), autosomal reces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental eye research 2014-04, Vol.121, p.74-85
Hauptverfasser: Johnson, Adiv A., Lee, Yong-Suk, Chadburn, Andrew J., Tammaro, Paolo, Manson, Forbes D., Marmorstein, Lihua Y., Marmorstein, Alan D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BEST1 encodes Bestrophin-1 (Best1), a homo-oligomeric, integral membrane protein localized to the basolateral plasma membrane of the retinal pigment epithelium. Mutations in BEST1 cause five distinct retinal degenerative diseases, including adult vitelliform macular dystrophy (AVMD), autosomal recessive bestrophinopathy (ARB), autosomal dominant vitreoretinochoroidopathy (ADVIRC), and retinitis pigmentosa (RP). The mechanisms underlying these diseases and why mutations cause one disease over another are, for the most part, unknown. To gain insights into these four diseases, we expressed 28 Best1 mutants fused to YFP in polarized MDCK monolayers and, via confocal microscopy and immunofluorescence, live-cell FRET, and reciprocal co-immunoprecipitation experiments, screened these mutants for defects in localization and oligomerization. All 28 mutants exhibited comparable FRET efficiencies to and co-immunoprecipitated with WT Best1, indicating unimpaired oligomerization. RP- and ADVIRC-associated mutants were properly localized to the basolateral plasma membrane of cells, while two AVMD and most ARB mutants were mislocalized. When co-expressed, all mislocalized mutants caused mislocalization of WT Best1 to intracellular compartments. Our current and past results indicate that mislocalization of Best1 is not an absolute feature of any individual bestrophinopathy, occurring in AVMD, BVMD, and ARB. Furthermore, some ARB mutants that do not also cause dominant disease cause mislocalization of Best1, indicating that mislocalization is not a cause of disease, and that absence of Best1 activity from the plasma membrane is tolerated. Lastly, we find that the ARB truncation mutants L174Qfs*57 and R200X can form oligomers with WT Best1, indicating that the first ∼174 amino acids of Best1 are sufficient for oligomerization to occur. •Mislocalization of Best1 is not pathogenic.•The absence of Best1 at the plasma membrane is well tolerated.•Oligomeric defects are not associated with the bestrophinopathies.•The first 174 amino acids of Best1 are sufficient for oligomerization to occur.•Amino acids 472–585 are not necessary for proper localization of Best1.
ISSN:0014-4835
1096-0007
1096-0007
DOI:10.1016/j.exer.2014.02.006