All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins

A combination of a sensitive blue light–gated channelrhodopsin actuator and red-shifted Arch-based voltage sensors allows all-optical electrophysiology without cross-talk in cultured neurons or brain slices. All-optical electrophysiology—spatially resolved simultaneous optical perturbation and measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2014-08, Vol.11 (8), p.825-833
Hauptverfasser: Hochbaum, Daniel R, Zhao, Yongxin, Farhi, Samouil L, Klapoetke, Nathan, Werley, Christopher A, Kapoor, Vikrant, Zou, Peng, Kralj, Joel M, Maclaurin, Dougal, Smedemark-Margulies, Niklas, Saulnier, Jessica L, Boulting, Gabriella L, Straub, Christoph, Cho, Yong Ku, Melkonian, Michael, Wong, Gane Ka-Shu, Harrison, D Jed, Murthy, Venkatesh N, Sabatini, Bernardo L, Boyden, Edward S, Campbell, Robert E, Cohen, Adam E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A combination of a sensitive blue light–gated channelrhodopsin actuator and red-shifted Arch-based voltage sensors allows all-optical electrophysiology without cross-talk in cultured neurons or brain slices. All-optical electrophysiology—spatially resolved simultaneous optical perturbation and measurement of membrane voltage—would open new vistas in neuroscience research. We evolved two archaerhodopsin-based voltage indicators, QuasAr1 and QuasAr2, which show improved brightness and voltage sensitivity, have microsecond response times and produce no photocurrent. We engineered a channelrhodopsin actuator, CheRiff, which shows high light sensitivity and rapid kinetics and is spectrally orthogonal to the QuasArs. A coexpression vector, Optopatch, enabled cross-talk–free genetically targeted all-optical electrophysiology. In cultured rat neurons, we combined Optopatch with patterned optical excitation to probe back-propagating action potentials (APs) in dendritic spines, synaptic transmission, subcellular microsecond-timescale details of AP propagation, and simultaneous firing of many neurons in a network. Optopatch measurements revealed homeostatic tuning of intrinsic excitability in human stem cell–derived neurons. In rat brain slices, Optopatch induced and reported APs and subthreshold events with high signal-to-noise ratios. The Optopatch platform enables high-throughput, spatially resolved electrophysiology without the use of conventional electrodes.
ISSN:1548-7091
1548-7105
DOI:10.1038/nmeth.3000