Elevated Fatty Acid Ethyl Esters in Meconium of Sheep Fetuses Exposed In Utero to Ethanol—A New Animal Model
Specific fatty acid ethyl esters (FAEE) in meconium of newborns have been shown to correlate with maternal ethanol exposure. An animal model is needed to assess the validity of this biomarker. We hypothesized that the pregnant/fetal sheep is a feasible animal model for validating FAEE as a biomarker...
Gespeichert in:
Veröffentlicht in: | Pediatric research 2008-02, Vol.63 (2), p.164-168 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Specific fatty acid ethyl esters (FAEE) in meconium of newborns have been shown to correlate with maternal ethanol exposure. An animal model is needed to assess the validity of this biomarker. We hypothesized that the pregnant/fetal sheep is a feasible animal model for validating FAEE as a biomarker of prenatal ethanol exposure. Nine pregnant ewes were treated during the third trimester with different i.v. ethanol doses. The control group consisted of 14 pregnant ewes exposed to similar volumes of saline. On gestational d 133, the fetuses were delivered and meconium samples removed. FAEEs were quantified by gas chromatography-flame ionization detection. FAEEs were found in both control and ethanol exposed fetuses. Ethyl oleate, ethyl linoleate, and ethyl arachidonate levels were significantly higher in the ethanol-exposed sheep. Ethyl oleate was the FAEE that correlated most strongly with alcohol ingestion during pregnancy and had the greatest area under the curve (0.94). Using a cut-off value of 131 ng/g ethyl oleate dry weight, sensitivity was 89% and specificity was 100%. In conclusion, pregnant ewes are a feasible model for validating biomarkers of prenatal ethanol exposure. Ethyl oleate, ethyl linoleate, and ethyl arachidonate may be useful biomarkers of prenatal alcohol exposure. |
---|---|
ISSN: | 0031-3998 1530-0447 |
DOI: | 10.1203/PDR.0b013e31815f651e |