Caspase-8-mediated PAR-4 cleavage is required for TNFα-induced apoptosis

The tumor suppressor protein prostate apoptosis response-4 (PAR-4) is silenced in a subset of human cancers and its down-regulation serves as a mechanism for cancer cell survival following chemotherapy. PAR-4 re-expression selectively causes apoptosis in cancer cells but how its pro-apoptotic functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncotarget 2014-05, Vol.5 (10), p.2988-2998
Hauptverfasser: Treude, Fabian, Kappes, Ferdinand, Fahrenkamp, Dirk, Müller-Newen, Gerhard, Dajas-Bailador, Federico, Krämer, Oliver H, Lüscher, Bernhard, Hartkamp, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tumor suppressor protein prostate apoptosis response-4 (PAR-4) is silenced in a subset of human cancers and its down-regulation serves as a mechanism for cancer cell survival following chemotherapy. PAR-4 re-expression selectively causes apoptosis in cancer cells but how its pro-apoptotic functions are controlled and executed precisely is currently unknown. We demonstrate here that UV-induced apoptosis results in a rapid caspase-dependent PAR-4 cleavage at EEPD131G, a sequence that was preferentially recognized by caspase-8. To investigate the effect on cell growth for this cleavage event we established stable cell lines that express wild-type-PAR-4 or the caspase cleavage resistant mutant PAR-4 D131G under the control of a doxycycline-inducible promoter. Induction of the wild-type protein but not the mutant interfered with cell proliferation, predominantly through induction of apoptosis. We further demonstrate that TNFα-induced apoptosis leads to caspase-8-dependent PAR-4-cleavage followed by nuclear accumulation of the C-terminal PAR-4 (132-340) fragment, which then induces apoptosis. Taken together, our results indicate that the mechanism by which PAR-4 orchestrates the apoptotic process requires cleavage by caspase-8.
ISSN:1949-2553
1949-2553
DOI:10.18632/oncotarget.1634